s Students MTH215
Department of Mathematics

 Roster of Students for MTH215, section 03 Vladimir A. Dobrushkin,Lippitt Hall 202C, 874-5095,dobrush@math.uri.edu Acevedo Sanchez,Samuel Arturo: $$\quad {\bf T} = \begin{bmatrix} 0&1&1 \\ 1&1&1 \\ 1&1&2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Albakr,Abdullah: $$\quad {\bf T} = \begin{bmatrix} 3&-1&1 \\ 1&-3&-1 \\ -1&1&3 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Alfonse,Ryleigh Nicole: $$\quad {\bf T} = \begin{bmatrix} 2&2&3 \\ 2&1&1 \\ 1&2&3 \end{bmatrix} , \quad {\bf S} = \begin{bmatrix} 1&2&1 \\ 1&2&1 \\ 2&1&3 \end{bmatrix}$$ Ankomah-Mensah,Nathan: $$\quad {\bf T} = \begin{bmatrix} 1&1&2 \\ 2&-2&3 \\ 3&2&6 \end{bmatrix} , \quad {\bf S} = \begin{bmatrix} 1&1&2 \\ 2&-2&4 \\ 3&2&6 \end{bmatrix}$$ Augeri,Ronald Anthony: $$\quad {\bf T} = \begin{bmatrix} 3&-4&2& \\ -11&-10&-1 \\ 1&13&-3 \end{bmatrix} , \quad {\bf S} = \begin{bmatrix} 14&10&3 \\ 6&-2&9 \\ 15&6&9 \end{bmatrix}$$ Baker,Michael Patrick: $$\quad {\bf T} = \begin{bmatrix} \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Bhatti,Hassan Munir: $$\quad {\bf T} = \begin{bmatrix} 1&1&1 \\ 1&0&1 \\ 1&1&2 \end{bmatrix} , \quad {\bf S} = \begin{bmatrix} 1&2&1 \\ 0&-4&-1 \\ -1&3&1 \end{bmatrix}$$ Boardman,Andy Edward: $$\quad {\bf T} = \begin{bmatrix} 3&2&1 \\ 2&3&3 \\ 2&2&2 \end{bmatrix} , \quad {\bf S} = \begin{bmatrix} 1&1&2 \\ 2&3&1 \\ 1&3&1 \end{bmatrix}$$ Carley,Michael: $$\quad {\bf T} = \begin{bmatrix} \end{bmatrix} , \quad {\bf S} = \begin{bmatrix} 1&2&3 \\ 4&5&6 \\ 3&2&1 \end{bmatrix} ,$$ Coleman,Brian $${\bf T} = \begin{bmatrix} 2&1&1 \\ 3&2&1 \\ 2&1&2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Daylor,Sean: $$\quad {\bf T} = \begin{bmatrix} 16&9&10 \\ 9&5&5 \\ 14&8&9 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Dickie,Alex: $$\quad {\bf T} = \begin{bmatrix} 2&2&1 \\ 5&6&3 \\ 1&3&2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 2&4&4 \\ -3&3&2 \\ 1&2&2 \end{bmatrix}$$ Dimino,Danielle: $$\quad {\bf T} = \begin{bmatrix} 1&3&1 \\ 2&-1& 4 \\ 1&2& 0 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 5&-1&7 \\ 1&1&3 \\ 9&0&15 \end{bmatrix}$$ Fagan,Mike Patrick $$\quad {\bf T} = \begin{bmatrix} 2&1&-1 \\ 1&1&1 \\ 2&3&4 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Filaoye,Femi $$\quad {\bf T} = \begin{bmatrix} \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Gohde,Becky $$\quad {\bf T} = \begin{bmatrix} 1&0&2 \\ 2&-1&4 \\ 1&2&1 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&1&1 \\ 1&0&2 \\ 2&3&1 \end{bmatrix}$$ Goode,Bryce Frederick $$\quad {\bf T} = \begin{bmatrix} 1&-1&-1 \\ 1&1&2 \\ 0&1&2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&-1&1 \\ -1&1&-1 \\ 1&-1&1 \end{bmatrix}$$ Haberek,Dan Bernard $$\quad {\bf T} = \begin{bmatrix} 2&-5&1 \\ -2&4&-1 \\ -5&6&-2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 12&-45&-6 \\ 5&2&3 \\ 10&4&6 \end{bmatrix}$$ Hardman,Ian $$\quad {\bf T} = \begin{bmatrix} 3&3&3 \\ 1&2&2 \\ 2&3&2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&2&3 \\ 3&3&3 \\ 3&2&1 \end{bmatrix}$$ Hunter,John Travis $$\quad {\bf T} = \begin{bmatrix} 3&1&1 \\ 2&3&2 \\ 2&1&1 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Hyde,Mason $$\quad {\bf T} = \begin{bmatrix} 3&1&1 \\ 2&1&2 \\ 3&1&2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&3&2 \\ 1&3&2 \\ 2&1&1 \end{bmatrix}$$ Jarvis,Hunter Peter $$\quad {\bf T} = \begin{bmatrix} 8&3&4 \\ 7&4&4 \\ 6&8&5 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Josloff,Dan Alexander $$\quad {\bf T} = \begin{bmatrix} 1&3&2 \\ 2&3&3 \\ 2&1&2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Kanga,Power $$\quad {\bf T} = \begin{bmatrix} 1&-2&1 \\ 4&-7&3 \\ -2&5&-4 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Keefe,Timothy Edward $$\quad {\bf T} = \begin{bmatrix} 4&3&-3 \\ -1&3&4 \\ 3&2&-2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Keller,Ryan Jeffrey $$\quad {\bf T} = \begin{bmatrix} 2&3&0 \\ 1&3&4 \\ 1&2&1 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{bmatrix}$$ King,John Patrick $$\quad {\bf T} = \begin{bmatrix} 4&-1&2 \\ -1&3&1 \\ 0&2&1 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&-2&0 \\ -2&2&2 \\ 2&1&-1 \end{bmatrix}$$ Kwok,Timothy James $$\quad {\bf T} = \begin{bmatrix} 1&2&3 \\ 5&7&2 \\ -3&-17&-57 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&1&-2 \\ 1&-2&1 \\ -2&1&1 \end{bmatrix}$$ Lewis,Madison $$\quad {\bf T} = \begin{bmatrix} 1&3&2 \\ 0&2&1 \\ 4&3&3 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 2&4&5 \\ 4&8&10 \\ 1&3&4 \end{bmatrix}$$ Lindgren,Sam William $$\quad {\bf T} = \begin{bmatrix} 2&3&2 \\ 4&2&3 \\ 9&6&7 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} -2&-2&4 \\ -2&4&-2 \\ 4&-2&-2 \end{bmatrix}$$ Myers,Austin $$\quad {\bf T} = \begin{bmatrix} 2&1&2 \\ 1&2&2 \\ -1&1&1 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&3&5 \\ 2&4&6 \\ 1&3& 5 \end{bmatrix}$$ Onishi Assanuma,Alexandre $$\quad {\bf T} = \begin{bmatrix} 1&2&3 \\ 8&5&9 \\ 6&4&7 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 3&2&1 \\ 1& 1& 1 \\ 1&2&3 \end{bmatrix}$$ Pease,Nick Milton $$\quad {\bf T} = \begin{bmatrix} 2&3&5 \\ 3&2&3 \\ 9&5&7 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Penny,Geoffroy $$\quad {\bf T} = \begin{bmatrix} -14&5&-1 \\ -2&0&-7 \\ 15&-4&14 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} -3&13&-14 \\ 6&-9&6 \\ -4&6&-4 \end{bmatrix}$$ Phelan,Liam Tobin $$\quad {\bf T} = \begin{bmatrix} 1&1&2 \\ 1&2&1 \\ 1&1&3 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&2&3 \\ 1&1&2 \\ 3&-1&2 \end{bmatrix}$$ Phung,Andrew $$\quad {\bf T} = \begin{bmatrix} 1&1&2 \\ -2&-5&1 \\ -1&-3&1 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} 1&2&3 \\ 1&0&1 \\ 3&4&7 \end{bmatrix}$$ Rakip,Sam $$\quad {\bf T} = \begin{bmatrix} 1&1&6/5 \\ 3&2&3 \\ 2&3&2 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Rock,Michael Glennon $$\quad {\bf T} = \begin{bmatrix} 2&1&1 \\ 1&2&1 \\ 1&1&1 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} -1&1&-1 \\ 1&-1&1 \\ -1&1&-1 \end{bmatrix}$$ Trager,William David $$\quad {\bf T} = \begin{bmatrix} 16&15&8 \\ 14&13&7 \\ 9&6&4 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Woodstock,Camren Joseph $$\quad {\bf T} = \begin{bmatrix} 0&1&2 \\ 1&1&2 \\ 2&2&3 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ Young,Dylan Jacob $$\quad {\bf T} = \begin{bmatrix} 2&3&6 \\ 3&2&3 \\ 17&11&16 \end{bmatrix} , \qquad {\bf S} = \begin{bmatrix} \end{bmatrix}$$ BACK TO MTH215