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Abstract

A study of rational maps of the real or complex projective plane of degree two or more, concen-
trating on those which map a genus one curve onto itself, necessarily by an expanding map. We
describe relatively simple examples with a rich variety of interesting dynamical behaviors which are
perhaps familiar to the applied dynamics community but not to specialists in several complex vari-
ables. For example, we describe smooth attractors with riddled or intermingled attracting basins,
and we observe “blowout” bifurcations when the transverse Lyapunov exponent for the invariant
curve changes sign. In the complex case, we prove that the genus one curve (a topological torus) can
never have a trapping neighborhood, yet it can have an attracting basin of large measure (perhaps
even of full measure). We also describe examples where there appear to be attracting Herman rings
(that is topological cylinders mapped to themselves with irrational rotation number) with open at-
tracting basin. Section 8 provides a more general discussion of Herman rings and Siegel disks for
arbitrary holomorphic maps of P2(C); and the last section outlines open problems.

Keywords: attractors, elliptic curves, Herman rings, intermingled basins, measure-theoretic at-
tracting set, Siegel disks, transverse Lyapunov exponent.
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1 Introduction

In the paper “Self-maps of P2 with invariant elliptic curves,” Bonifant and Dabija [2002] constructed
many examples of rational maps f of the real or complex projective plane of degree d ≥ 2 with a curve
C = f(C) of genus one as invariant subset. In most of the examples, these rational maps are holomorphic
(that is, everywhere defined). We will make some use of general rational maps which are allowed to
have finitely many points of indeterminacy, but will usually concentrate on holomorphic maps. The
case of a curve of genus one is of particular interest, since examples of holomorphic or rational self-
maps with an invariant curve of genus zero are easy to construct, while higher genus examples cannot
exist. (See Remarks 1.5 and 2.2. Here the “genus” of a real curve is defined to be the genus of its

†Died June 22, 2003.
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complexification.) We will be primarily concerned with the case where the invariant genus one curve
C is non-singular, necessarily of degree three. In this case we refer to C as an elliptic curve.

The first seven sections of the present paper study the extent to which such an invariant genus
one curve C ⊂ P

2 can be an “attractor”. We must distinguish between several possible degrees of
attraction.

Definition 1.1. A compact subset A = f(A) of P
2(C) or P

2(R) will be called:

• A measure-theoretic attractor, if it satisfies the following two conditions:

1) A is a minimal measure attracting set, that is, its attracting basin (the union of all orbits which
converge to A) has positive measure, but no closed proper subset has a basin of positive
measure.1

2) It contains a dense orbit, and hence cannot be expressed as the union of strictly smaller
closed invariant sets.

• A trapped attractor if:

1) A has a compact trapping neighborhood N such that f(N) ⊂ N and A =
⋂

n f
◦n(N).

2) A contains a dense orbit. (This property is again required to assure indecomposability.)

• A global attractor if A is a measure-theoretic attractor with the property that its attracting basin
has full measure in the ambient space P

2.

In both the real and complex cases, we provide examples in which an elliptic curve C is a measure-
theoretic attractor. In fact there are examples in which there are two distinct smooth algebraic curves
which are measure-theoretic attractors and whose attracting basins are thoroughly intermingled, so
that they have the same topological closure. We provide an example of a singular real genus one
quartic which is a trapped attractor; but we prove that a complex genus one curve can never be a
trapped attractor. In fact, it seems likely that the attracting basin of a complex genus one curve
cannot have interior points, so that the set of points which are not attracted to C must be everywhere
dense. (Compare Lemma 4.5, as well as Proposition 6.4.)

We describe examples in which it seems possible that the genus one curve is a global attractor,
with attracting basin of full measure. We also provide a family of examples where there appears to be
a pair of Herman rings as attractor, with an open neighborhood as attracting basin.

Definition 1.2. By a Herman ring for a rational map f of P2(C) we mean a complex one-dimensional
annulus H which is holomorphically embedded in P2(C), and which maps to itself by an irrational
rotation under f or under some iterate of f . Similarly, a Siegel disk will mean a holomorphically
embedded complex one-dimensional open disk which maps to itself by an irrational rotation under f
or f◦k. Such a ring or disk is maximal if it cannot be embedded in a larger Herman ring or Siegel
disk. (However, we will usually not assume maximality.) We will be particularly interested in the case
where all or part of such a ring or disk is transversally attracting. (Compare §8.)

1See [Milnor 1985], and compare the discussion of “Milnor attractors” in [Kaneko 2002] or [Ashwin et al. 1996]. For
other concepts of attractor, see Remark 5.7, as well as [Auslander et al. 1964]. For interesting examples in the real case
see [Alexander et al. 1992], [Kan 1994], [Maistrenko et al. 1998], [Ashwin et al. 1996], [Ott and Sommerer 1994], [Ott et

al. 1993]; and for attractors in P
2(C) see [Fornæss and Sibony 2001], [Fornæss and Weickert 1999], [Jonsson and Weickert

2000].
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An Outline of the Following Sections. Section 2 describes some basic ideas: the transverse
Lyapunov exponent along an invariant genus one curve is a primary indicator of whether or not the curve
is attracting. Methods for actually computing this transverse exponent will be described in Part 2, the
sequel to this paper; however, the conclusions of these computations are often quoted below. Section 3
describes the very restrictive class of rational maps with a first integral. These are used in Section 4 to
construct a three parameter family of more interesting rational maps of degree four. Section 5 studies
eight explicit examples, with conjectured descriptions based on numerical computation. In the first
three examples, randomly chosen orbits always seem to converge to the Fermat curve x3 + y3 + z3 = 0,
both in the real case with ambient space P

2(R) and in the complex case with ambient space P
2(C).

This suggests that the real or complex Fermat curve may be a global attractor, with attracting basin
of full measure. (However, such experiments can never be decisive, since other attractors with basins
of extremely small measure could easily be missed by our random samples.) Example 5.4 suggests
that a cycle of two Herman rings can be a measure-theoretic attractor in P2(C) (perhaps even be a
global attractor) for such a map with invariant genus one curve. In Example 5.5, there is an attracting
fixed point at the “north pole”, while the “equator” is an invariant P1 which forms a measure-theoretic
attractor. In Example 5.6 a typical orbit seems to spend most of its time bouncing between the three
coordinate axis, but sometimes escaping briefly. This section concludes with examples of lower degree
maps which have an invariant elliptic curve. In particular, Example 5.8 describes a degree 3 map of
P

2(C) which appear to have the Fermat curve as a global attractor.
All of these conclusions have been empirical, based on numerical computation. However, Sections

6 and 7 provide cases with explicit proofs. Example 6.2 considers elementary maps, which carry each
line through a preferred point %0 to a line through %0. It describes examples which have three different
attractors with thoroughly intermingled basins, all of positive measure. (See [Alexander et al. 1992]
for similar examples.) Two of these basins are dense in the Julia set, while the third basin, which is
everywhere dense, is equal to the Fatou set. Note that we use these terms with their classical meanings:

Definition 1.3. The Fatou set is defined to be the largest open set on which the sequence of iterates
of f forms a normal family; and the Julia set2 J is defined to be its complement in P

2(C) .

Theorem 7.2 provides examples of singular real quartic curves of genus one which are trapped
attractors under suitable rational maps; while Theorem 7.4 shows that a complex genus one curve
can never be a trapped attractor. (We don’t know whether non-singular real curves can be trapped
attractors.) Section 8 provides a more general discussion of Herman rings. The transverse Lyapunov
exponent for a (complex 1-dimensional) Herman ring or Siegel disk in P

2(C) provides a strict criterion
for attraction or repulsion. This exponent is no longer constant, as it was in the case of a genus one
curve, but is rather a convex piecewise linear function on the ring or disk, constant on each invariant
circle. We prove the persistence of invariant circles in P2(R) under suitable hypotheses, but our results
are not strong enough to prove the conjecture that the associated Herman rings in P2(C) are also
persistent. Section 9 concludes the discussion by providing a brief outline of open problems.

We will usually concentrate on the complex case, although many of the figures will necessarily
illustrate the real case.

Remark 1.4. Computation. Numerical computations are extremely delicate near the invariant
curve C. Thus it is essential to work with multiple precision arithmetic; but even so, numerical

2Caution: Other possible definitions of Julia set are sometimes used in the literature. Compare [Fornæss and Sibony
1994, 1995a, 1995b], [Hubbard and Papadopol 1994], [Sibony 1999]; and see [Briend and Duval 1999, 2001] and [Guedj
2005] for related results.
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simulation of the dynamics must be understood as a hint of the true state of affairs, rather than a
definitive answer. One surprising aspect of these maps is that in some cases orbits tend to spend quite
a bit of time extremely close to C even when the transverse exponent is positive. (Compare Figures
5 and 10.) In a similar situation, Maistrenko, Maistrenko and Popovich [1998, p. 2713] report that,
in the presence of a small positive value of the transverse exponent: “a trajectory may spend a very

long time in the neighborhood of the invariant subspace. From time to time, the repulsive character

of the chaotic set manifests itself, and the trajectory exhibits a burst in which it moves far away from

the invariant subspace, to be reinjected again into the proximity of this subspace. · · · [The] positive

value of the Lyapunov exponent applies over long periods of time. For shorter time intervals, the net

contribution · · · may be negative, and the trajectory is attracted to the chaotic set.” (Similar behavior
was described in [Platt et al. 1993].)

Remark 1.5. Genus Zero. (See also Example 8.1.) Some examples of holomorphic self-maps of
P2 with attracting invariant curves of genus zero are easy to construct. Thus, for the map

(x : y : z) 7→ (x : y : z/2)

the line z = 0 is an attracting curve with the region |z|2 < |x|2 + |y|2 as trapping neighborhood.
Similarly, if (x : y) 7→ (f1(x, y) : f2(x, y)) is any rational map of P

1 of degree d ≥ 2, then the line z = 0
is a trapped attracting curve for the map (x : y : z) 7→ (f1(x, y) : f2(x, y) : zd) . In particular, if we
start with a map of P1 which has a dense orbit (for example a Lattès map—compare Remark 4.8),
then we obtain a trapped attractor.

2 Rational Maps and the Transverse Lyapunov Exponent.

Let f be a rational map of P
2 = P

2(C). We can write f : P
2
rIf → P

2 , where

f(x : y : z) =
(
f1(x, y, z) : f2(x, y, z) : f3(x, y, z)

)
,

using homogeneous coordinates (x : y : z) (representing a point (x, y, z) ∈ C3r{(0, 0, 0)} which is well
defined only up to multiplication by a non-zero constant). Here f1 , f2 , f3 are to be homogeneous
polynomials of the same degree d = deg(f) ≥ 2 with no common factor, and If , the indeterminacy set,
is the finite set consisting of all common zeros of f1 , f2 , f3. By definition, d is the algebraic degree of
f . Such a rational map f is called holomorphic if If is vacuous so that f is an everywhere defined map
from P2 to itself. The topological degree of f as a map from P2 to itself is then equal to d2, while the
algebraic number of fixed points is d2 + d+ 1. However, if If 6= ∅, then there will be fewer fixed points
(or sometimes an entire curve of fixed points), and a generic point will have fewer than d2 preimages.

Now consider an algebraic curve C ⊂ P2, defined by a homogeneous equation Φ(x, y, z) = 0, with
degree deg(C) = deg(Φ) ≥ 1. We will say that a rational map f is well defined on C if the intersection
C ∩ If is empty so that f is defined and holomorphic throughout a neighborhood of C. It then follows
that the image C ′ = f(C) is itself an algebraic curve with deg(C ′) ≥ 1. Furthermore, the degree of the
restriction f |C : C → C′ is determined by the relation3

deg(f) deg(C) = deg(f |C) deg(C ′) . (1)

3Proof Outline: A generic line L intersects C′ in deg(C′) distinct points, none of which is a critical value of f |C. Each
of these has deg(f |C) preimages in C. On the other hand by Bezout’s Theorem, the curve f−1(L) of degree deg(f) will
intersect C in deg(f) deg(C) points, counted with multiplicity. In fact, for generic L, each of these intersections will be
transverse, and it follows that deg(f) deg(C) = deg(f |C) deg(C′), as required.
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Definition 2.1. An algebraic curve C ⊂ P2 will be called invariant under f if f is well defined on
C and if f(C) = C. It then follows from Equation (1) that the degree of the restriction f |C : C → C is
precisely equal to deg(f), the degree of the equations which define f . On the other hand, if C contains
points of indeterminacy then these remarks break down. For example, Cr(If ∩C) may consist entirely
of fixed points, or may map to a single point under f . In cases where If ∩C may be nonempty, but the
image f

(
Cr(If ∩ C)

)
is contained in C, the curve C will be called weakly f -invariant. If C is smooth

and weakly invariant, then f extends uniquely to a holomorphic map from C to itself; but the degree
on C maybe smaller than deg(f). (Compare Remarks 4.2 and 6.9 below.)

Remark 2.2. Curves of Higher Genus. As one consequence of this discussion, it follows that a
curve of genus g ≥ 2 can never be invariant under a map of P

2 of degree d ≥ 2. For it follows from the
Riemann-Hurwitz formula (see for example [Milnor 2006b]) that a curve of genus ≥ 2 does not admit
any self-maps of degree ≥ 2.

Returning to the genus one case, let D(n) = nD(1) be the divisor class on C which is obtained by
intersecting C with a generic curve of degree n in P

2. A given holomorphic map g : C → C of degree

d > 0 extends to a rational map of P2 which is well defined on C if and only if

g∗D(1) = D(d) .

(See [Bonifant and Dabija 2002, §2]. For a more general result see [Fakhruddin 2003].) If d < deg(C)
then this extension is unique; but if d ≥ deg(C) then there exists a 3

(
d−deg(C)+2

2

)
dimensional family of

such extensions since we can always replace the associated homogeneous polynomial map F : C
3 → C

3

by F + ΦH where Φ = 0 is the defining equation for C, and where H : C3 → C3 is any homogeneous
map with deg(H) = d − deg(C). In this case, a generic extension will be holomorphic (i.e., defined
everywhere).

Any compact Riemann surface of genus one is conformally isomorphic to some elliptic curve in P2

which is uniquely determined up to a conformal automorphism of P
2. (Compare [Griffiths and Harris

1994, p. 222].) Alternatively, it is conformally isomorphic to some flat torus C/Ω, where Ω is a lattice
which is uniquely determined up to multiplication by a constant.

One particular virtue of curves of genus one is that the holomorphic self-maps are very well under-
stood. For any genus one curve C ⊂ P2 there is a holomorphic immersion

υ : C/Ω → C

which is one-to-one except over finitely many singular points in the case of a singular curve (with
degree greater than three), and is biholomorphic in the case of an elliptic curve (of degree three). Any
holomorphic self-map of C lifts to a holomorphic self-map of C/Ω which is necessarily affine, t 7→ at+b.
It follows easily that the normalized Lebesgue measure on C/Ω pushes forward to a canonical smooth
probability measure λ on C which is invariant under every non-constant self-map. The derivative a of
the affine map on C/Ω will be called the multiplier of f on C. Note that the product aΩ is a sublattice
of finite index in Ω, and that |a|2 is equal to the index of this sublattice. Equivalently, |a|2 is the
topological degree of f considered as a map from C to itself. In particular, |a|2 is equal to the algebraic
degree d of f whenever C ⊂ P2 is invariant under the rational map f . Since we always assume that
d ≥ 2, it follows that this canonical measure λ is ergodic.

In the case of a genus one curve defined by equations with real coefficients, the real curve

C(R) = C ∩ P
2(R)
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has at most two connected components. If C(R) is mapped into itself by a rational map f of P2(R),
then at least one connected component, say C0(R), must map onto itself under f or under f ◦f . In this
case we have a uniformizing map R/Z → C0(R), such that f (or f ◦ f) corresponds to a map on R/Z
which is linear with constant integer multiplier. Such an invariant component C0(R) has a canonical
invariant probability measure.

The Transverse Lyapunov Exponent.

Let C be an elliptic curve, invariant under the rational map f . We will describe an associated real
number which is conjectured to be negative if and only if C is a measure-theoretic attractor. To
fix ideas we will concentrate on the complex case, but constructions in the real case are completely
analogous. The notation TP

2|C will be used for the complex 2-plane bundle of vectors tangent to P
2(C)

at points of the submanifold C, and the abbreviated notation T C will be used for the “transverse”
complex line bundle over C having the quotient vector space

T (C, p) = T (P2, p)/T (C, p)

as typical fiber. In other words, there is a short exact sequence 0 → TC → TP2|C → T C → 0
of complex vector bundles over C . It is sometimes convenient to refer to T C as the “normal bundle”
of C , although that designation isn’t strictly correct. If f : P

2 → P
2 with f(C) ⊂ C , then f induces

linear maps
f ′(p) : T (C, p) → T (C, f(p)) , (2)

and these linear maps collectively form a fiberwise linear self-map f ′ : T C → T C .
Now choose a metric on this complex normal bundle. That is, choose a norm ‖~v ‖ on each quotient

vector space T C which depends continuously on ~v, vanishes only on zero vectors, and satisfies ‖t~v‖ =
|t| ‖~v‖ . Then the linear map f ′ of Equation (2) has an operator norm

‖f ′(p)‖ = ‖f ′~v ‖ /‖~v‖ (3)

which is well defined and satisfies the chain rule. Here ~v can be any non-zero vector in the fiber T (C, p)
over p. By definition, the transverse Lyapunov exponent along the invariant elliptic curve C is equal to
the rate of exponential growth

Lyap C = lim
k→∞

(1/k) log ‖(f◦k)′ (p)‖. (4)

for almost every choice of initial point p ∈ C. By the Birkhoff Ergodic Theorem, this coincides with
the average value

Lyap C(f) =

∫

C
log ‖f ′(p)‖ dλ(p) . (5)

Using the fact that the measure λ is invariant under f , it is not hard to check directly that this
average value is independent of the choice of metric.

Thus a negative value of Lyap C means that under iteration of f almost any point which is “infinites-
imally close” to C will converge towards C. A key role in this case is played by the stable sets of the
various points p ∈ C . By definition, the stable set of p is the union of all connected sets containing p
for which the diameter of the n-th forward image tends to zero as n→ ∞ . Many such stable sets are
smooth curves. With a little imagination, some of these are clearly visible in Figures 3 through 13. It
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is natural to expect that negative values of Lyap C will imply that C is a measure-theoretic attractor.4

On the other hand, if Lyap C > 0 then almost any “infinitesimally close” point will be pushed away

from C. It seems natural to conjecture that positive values of Lyap C should imply that the attracting
basin of C has measure zero. However, this seems like a difficult question. (Compare Remark 6.8.) The
term blowout bifurcation has been introduced in [Ott and Sommerer 1994] for a transition in which a
transverse Lyapunov exponent crosses through zero. (Compare [Maistrenko et al. 1998] or [Ashwin et

al. 1998].)

3 Maps with First Integral.

By definition, a first integral for a dynamical system is a non-constant function which is constant on each
orbit. In particular, by a first integral for a rational map f : P

2
rIf → P

2 we will mean a non-constant
rational function η : P2rIη → P1 , with values in the projective line, which satisfies

η
(
f(x : y : z)

)
= η(x : y : z) (6)

whenever both sides are defined. Identifying P
1 with the Riemann sphere Ĉ = C ∪ {∞}, we can write

η(x : y : z) = Φ(x, y, z)/Ψ(x, y, z) ∈ Ĉ ,

where Φ and Ψ are homogeneous polynomials of the same degree without common factor. Equivalently,
the loci {η = constant} form a pencil of algebraic curves

αΦ(x, y, z) + βΨ(x, y, z) = 0 (7)

which are weakly invariant under f (Definition 2.1). Intuitively, these weakly invariant curves yield a
somewhat singular “foliation” of the projective plane. The curves in this pencil intersect only in the
finite set Iη consisting of common zeros of Φ and Ψ. (Note that a point can be contained in two such
weakly invariant curves only if it is either periodic, or a point of indeterminacy for f .) We will be
interested in maps with a pencil of weakly invariant elliptic curves. Such maps are exceedingly special.
For example we have the following.

LEMMA 3.1. Maps with First Integral. Let f be a rational map with first integral, such

that a generic point of P2 is contained in an elliptic curve which is mapped to itself with degree

d ≥ 2. Then:

•• There are no dense orbits, since every orbit is contained in a weakly invariant curve.

• Periodic points, repelling along this curve, are everywhere dense. Hence the Fatou set, is

empty.

• For most values of n there are infinitely many fixed points of f ◦n, with at least one in

each weakly invariant curve. Hence there must be an entire algebraic curve of such points.

• The indeterminacy set If is necessarily non-empty (even after a fine number of blowups

of P2(C)).

4A sketch of a proof is given in [Alexander et al. 1992], using a version of Pesin theory to construct stable manifolds.
However, the details are difficult because of the presence of varieties of critical points for our maps. We will not try to
provide a proof in this paper, except in one very special case (Theorem 6.3 below).
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The last statement follows since there are infinitely many points of fixed period n. (Note also that
a generic point has only d preimages, all lying in the weakly invariant curve which passes through it,
rather than the d2 preimages it would have in the holomorphic case.) The other statements are easily
verified.

Here is a class of examples which generalize a construction due to A. Desboves (see [Desboves
1886]). For any smooth cubic curve C ⊂ P

2, there is a canonical map f : C → C called the tangent
process, constructed as follows. For any point p ∈ C, let Lp ⊂ P

2 be the unique line which is tangent
to C at p. Then the image f(p) is defined by the equation

Lp ∩ C = {p} ∪ {f(p)} .

This is closely related to the standard additive group law on C. In fact if we choose the parametrization
υ : C/Ω → C of §2 so that υ(0) is one of the nine flex points of C, then three distinct points tj of C/Ω
will have sum t1 + t2 + t3 equal to zero if and only the images υ(tj) ∈ C are collinear. In our case, since
there is a double intersection at p, we obtain the equation 2t1 + t3 = 0 or t1 7→ t3 = −2t1. Thus f has
multiplier −2 and degree 4.

Now start with two distinct cubic curves in P
2, described by homogeneous equations Φ(x, y, z) = 0

and Ψ(x, y, z) = 0 . Then there is an entire one-parameter family of such curves, given by Equation
(7), which fill out the projective plane. In fact, any point of P

2 which is not a common zero of Φ and
Ψ belongs to a unique curve

Φ/Ψ = constant = − β/α ∈ Ĉ .

If a generic curve in our one parameter family is smooth, then a generic point p ∈ P
2 belongs to a

unique smooth curve Cp in the family. Applying the tangent process at p, we obtain a well defined
image point f(p) ∈ Cp. Since p is generic, this extends to a uniquely defined rational map of P

2 which
carries each curve of our family into itself.

Let us specialize to the classical example of [Hesse 1844], with Φ(x, y, z) = x3 + y3 + z3 and
Ψ(x, y, z) = 3xyz. (Compare [Artebani and Dolgachev 2006]. Here the factor 3 has been inserted
for later convenience.) The corresponding foliation of the real projective plane P2(R) by the curves of
Equation (7) is illustrated in Figure 1. This foliation has three kinds of singularities, all clearly visible
in the figure. There are:

(a) Three singularities where two of the three coordinates x, y, z are zero. These all lie in the real
plane P2(R) ⊂ P2(C).

(b) Three singularities in the real plane (or nine in the complex plane) where all of these curves
intersect at common flex points. Each of these lies along just one of the three coordinate axes.

(c) One real singularity (or nine complex singularities) where x3 = y3 = z3, represented by the center
in the upper right of Figure 1.

According to Desboves, the tangent processes for these various curves Φ/Ψ = κ fit together to
yield a well defined rational map f0 : P2rIf0

→ P2 which is given by the formula

f0(x : y : z) =
(
x(y3 − z3) : y(z3 − x3) : z(x3 − y3)

)
. (8)

The indeterminacy set If0
for this classical Desboves map consists of the twelve points of type (a) and

(c), as listed above. This particular example has the advantage (as compared with an arbitrary choice
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Figure 1: Hesse “Foliation” of the real projective plane by the pencil of elliptic curves
Φ/Ψ = κ ∈ Ĉ , where Φ = x3 + y3 + z3 and Ψ = 3xyz . Here P

2(R) is represented as a unit
2-sphere with antipodal points identified. These real curves intersect only at their three common
inflection points, which look dark in the figure. In the limiting case as κ→ ∞ , the curve Φ = κΨ

degenerates to the union xyz = 0 of the three coordinate lines, which intersect at the points
(−1, 0, 0) , (0, 1, 0) and (0, 0, 1) respectively near the left, top, and center of the figure.

for Φ and Ψ) that most of the curves in our one parameter family are non-singular, and contain no
points of indeterminacy. The only exceptions are the curves Φ = κΨ with κ3 = 1, which are singular
at points of indeterminacy of type (c), and the degenerate case Ψ = 0 (corresponding to κ = ∞ ∈ Ĉ)
with singular indeterminacy points of type (a). The foliation singularities of type (b), where all of the
curves intersect, are all fixed points at which the value f0(p) = p is well defined.

For further examples of rational maps of P
2 with first integral, see Example 5.8 and Remark 6.9.

4 The Desboves Family.

Let Φ(x, y, z) be the homogeneous polynomial x3 + y3 + z3. The Fermat curve F is defined as the locus
of zeros Φ(x, y, z) = 0 in the projective plane P2. (Here we can work either over the real numbers or
over the complex numbers.) Most of the examples in §5 will belong to a family of 4th-degree rational
maps of P2 which carry this Fermat curve into itself, as introduced in [Bonifant and Dabija 2002, §6.3].
We will call these Desboves maps, since they arise from a simple perturbation of the classical Desboves
map f0 of Equation (8). Evidently f0 lifts to a homogeneous polynomial map

F0(x, y, z) =
(
x(y3 − z3) , y(z3 − x3) , z(x3 − y3)

)

from C3 to itself. Geometrically, f0 is defined by the property that the line from p to f0(p) is
tangent to the elliptic curve (x3 + y3 + z3)/3xyz = κ which passes through the point p . Its set of
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fixed points on each smooth curve in our family coincides with the intersection

x3 + y3 + z3 = 3xyz = 0 ,

and can also be identified with the set of points of inflection on any one of these curves, or as the set
of points where all of these curves intersect. This map f0 is not everywhere defined: it has a twelve
point set of points of indeterminacy as described at the end of §3. However, for any specified curve
Φκ(x, y, z) = x3 + y3 + z3 − 3κxyz = 0 in our family, if we replace F0 by the sum

FL(x, y, z) = F0(x, y, z) + L(x, y, z)Φκ(x, y, z)

where L is any linear map from C3 to itself, then we obtain a new map fL of P2(C) which coincides
with f0 on the particular curve Φκ(x, y, z) = 0 . For a generic choice of L, the resulting map fL of
P2(C) is well defined everywhere.

To simplify the discussion, we will restrict attention to the case κ = 0, taking

Φ(x, y, z) = Φ0(x, y, z) = x3 + y3 + z3 ,

and will take a linear map L which is described by a diagonal matrix,

L(x, y, z) = (ax , b y , c z) .

Definition 4.1. Desboves Maps. The resulting 3-parameter family of maps of the real or complex
projective plane will be called the family of Desboves maps. These maps f = fa,b,c are given by the
formula

f(x : y : z) =
(
x(y3 − z3 + aΦ) : y(z3 − x3 + bΦ) : z(x3 − y3 + cΦ)

)
, (9)

where a, b, c are the parameters. Each such f maps the Fermat curve F , defined by the equation
Φ(x, y, z) = 0 , into itself. Furthermore, each f maps each of the coordinate lines x = 0 or y = 0 or
z = 0 into itself.

For special values of the parameters, the map f may have points of indeterminacy (but never on
the curve). However, for a generic choice of parameters f is everywhere defined. More explicitly, it is
not hard to see that f is an everywhere defined holomorphic map from P

2 to itself if and only if we
avoid a union of seven hyperplanes in the space C3 of parameters, defined by the equation

abc(a+ b+ c)(a+ 1 − b)(b+ 1 − c)(c+ 1 − a) = 0 . (10)

Remark 4.2. Fixed Points. Generically, each complex Desboves map has 21 distinct fixed points
(nine with xyz 6= 0, nine on the Fermat curve with just one of the coordinates equal to zero, and three
with two of the coordinates equal to zero). However, there are two kinds of exception:

• If the product a b c (a+b+c) is zero, then one or more of the fixed points will be replaced
by an indeterminacy point.
• If one or more of the differences b − a , c − b, or a − c is equal to +1, then there is not
only an indeterminacy point but also an entire line of fixed points.
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In any case, there are exactly nine fixed points on the complex Fermat curve F , forming the intersection
of F with the locus xyz = 0 . Consider for example the three points (0 : 3

√
−1 : 1) obtained by

intersecting the curve F with the invariant line x = 0. If we introduce the coordinate Y = y/z ∈ Ĉ

on this line, then the restriction of the map f to this line is a rational map given by the formula

Y 7→ Y
b Y 3 + (b+ 1)

(c− 1)Y 3 + c
,

with fixed points at Y = 0, at Y = ∞, and at the three points Y 3 = −1. A brief computation shows
that the derivative of this one variable map at these five fixed points is respectively

(b+ 1)/c , (c− 1)/b , and 3(c− b) − 2 , (11)

where the last, corresponding to intersections of x = 0 with the Fermat curve, is counted three times.
(Something very exceptional occurs in the special case c = b + 1. In that case, all five derivatives are
+1, and in fact every point on the line x = 0 is fixed under f .) Similarly, permuting the coordinates
cyclically, we obtain corresponding formulas for the invariant lines y = 0 and z = 0 .

Remark 4.3. The Attracting Basin. According to [Bonifant and Dabija 2002, Theorem 5.4],
if C = f(C) is any invariant elliptic curve, then the set of iterated preimages of any point of C is
everywhere dense in the Julia set J(f). (Observe that since C is elliptic, the set of preimages of any
point of C is everywhere dense in C. It follows easily that the closure of the set of all preimages of a
point in C does not depend on which point we start with.)

It seems likely that the following further statement is true:

Conjecture 4.4. The entire attracting basin B(C), of an invariant elliptic curve C, consisting
of all points whose forward orbits converge to C, is contained in the Julia set J(f). Since
iterated preimages of points in C are certainly in B(C), this implies that the closure B(C) is
precisely equal to J(f).

An immediate consequence would be the following. (For a special case, see Proposition 6.4.)

LEMMA 4.5. No Interior Points? If this conjecture is true, then for any rational map

fa,b,c in the Desboves family, the attracting basin B(F) has no interior points. In other words,

the complementary set P2(C)rB(F) , consisting of points which are not attracted to F , is

everywhere dense in P2(C).

Proof. We must show that every point of B = B(F) can be approximated arbitrarily closely by
points outside of B. Assuming the Conjecture, it suffices to prove that every point of the Julia set
J(fa,b,c) can be approximated by points outside of B. Since the average of the differences c− b, b− a,
and a− c is zero, it follows from (11) that the average of the transverse derivatives at the fixed points
of f in F is −2. Hence at least one of these fixed points is strictly repelling. Suppose for example that
the points (0 : 3

√−1 : 1) are repelling within the line x = 0. Then the intersection of the basin B with
this line consists only of countably many iterated preimages of these points. Therefore there are points
(0 : y : z) arbitrarily close to (0 : −1 : 1) which are not in this basin. Since every point of J(fa,b,c)
can be approximated by iterated preimages of (0 : −1 : 1), it can also be approximated by iterated
preimages of such points (0 : y : z), as required.
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Figure 2: Graph of the transverse exponents along the real and complex Fermat curves as
functions of the middle parameter b for the “two-thirds family” of Definition 4.6, with Desboves
parameters (b − 2

3
, b , b + 2

3
) . The lower graph represents the real case, with a transverse

exponent which is strictly smaller (more attracting). In both cases the function is even, with a
sharp minimum at b = ±1/9. The box encloses the region −1 ≤ b ≤ 1 with −2.1 ≤ LyapF ≤ 1.

On the other hand, some of these fixed points on F may be attracting in the transverse direction.
For example, if |3(c − b) − 2| < 1 then each of the three fixed points where F intersects the line
x = 0 is a saddle, repelling along the Fermat curve, but attracting along this line which intersects it
transversally. The stable manifold for such a saddle point can be identified with its immediate attracting
basin within the line x = 0. It is not hard to check that this stable manifold is contained in the Julia
set. Hence its iterated preimages must be dense in the Julia set.

The attraction within this stable manifold will be particularly strong if c − b = 2
3 , so that the

transverse derivative 3(c − b) − 2 is zero, or in other words so that the associated fixed point is
transversally superattracting. Similarly, the transverse derivative at the three points where y = 0 (or
where z = 0) is zero if and only if a− c = 2

3 (or respectively b− a = 2
3).

Definition 4.6. The Two-Thirds Family. We will say that f belongs to the two-thirds family if
two of the three differences b− a , c− b and a− c are equal to 2

3 , or equivalently if two thirds of the
fixed points on the Fermat curve are transversally superattracting. (There are nine such fixed points
in the complex case, or three in the real case.) The average of the values of the transverse derivative
at these fixed points is always −2 , so if two out of the three values are zero then it follows that the
remaining value is −6, rather strongly repelling. To fix our ideas, let us suppose that

(a, b, c) = (b− 2
3 , b , b+ 2

3) , (12)

so that the transverse derivative is zero when x = 0 or z = 0, and −6 when y = 0. The associated
transverse Lyapunov exponent, plotted as a function of b, is shown in Figure 2. In the real case,
this transverse exponent is negative (that is attracting) if and only if |b| < 0.901 · · · , while in the
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complex case it is negative if and only if b < 0.274 · · · . See Part 2 of this paper for such computations.
(It seems empirically that the real Fermat curve is strictly “more attracting” than the corresponding
complex Fermat curve except in a few isolated cases. However, we do not have any explanation for this
phenomenon.)

Remark 4.7. Symmetries. We conclude this section with some more technical remarks. If we
permute the three parameters (a, b, c) cyclically, then clearly we obtain a new map fb,c,a which is
holomorphically conjugate to fa,b,c. We can generalize this construction very slightly by allowing odd
permutations also, but changing signs. If S3 is the symmetric group consisting of all permutations
i 7→ σi of the three symbols {1, 2, 3}, then S3 acts as a group of rotations of R

3 or C
3 as follows. For

each σ ∈ S3, consider the sign-corrected permutation of coordinates

σ̂(z1 , z2 , z3) = sgn(σ)
(
zσ1

, zσ2
, zσ3

)
. (13)

Then a brief computation shows that the homogeneous map Fa,b,c of R3 or C3 is linearly conjugate to
the map

Fbσ(a,b,c) = σ̂ ◦ Fa,b,c ◦ σ̂−1 .

It follows that the associated map fa,b,c of the projective plane is holomorphically conjugate to the map
fbσ(a,b,c). One can check that these are the only holomorphic conjugacies between Desboves maps (for
example, by making use of the eigenvalues of the first derivative of f at the 21 fixed points).

In the complex case, note also that each Desboves map f commutes with a finite group G ∼=
Z/3 × Z/3 of symmetries of the projective plane. In fact f ◦ g = g ◦ f for each g in the group G
consisting of all automorphisms

g(x : y : z) = (αx : βy : z) with α3 = β3 = 1 . (14)

Remark 4.8. A Closely Related Map. It is sometimes convenient to eliminate these last
symmetries by passing to the quotient space P2/G which is isomorphic to P2 itself, but with coordinates
(x3 : y3 : z3). If we introduce variables ξ = x3 , η = y3 , and ζ = z3 , and set ϕ = ξ + η + ζ , then
the map (x : y : z) 7→ (ξ : η : ζ) transforms the Fermat curve F to a line ϕ = 0 . Under this
transformation, the Desboves map (9) is semiconjugate to a different rational map

(ξ : η : ζ) 7→
(
ξ(η − ζ + aϕ)3 : η(ζ − ξ + bϕ)3 : ζ(ξ − η + cϕ)3)

)
,

also of degree four. Evidently this new map carries the line ϕ = 0 into itself by a Lattès map, that is
the image of a rigid torus map under a holomorphic semiconjugacy. (Compare [Milnor 2006a].)

5 Empirical Examples.

This section will provide empirical discussions of six examples from the Desboves family of degree four
maps, as described in §4, plus two examples of lower degree maps. (Our first example has points
of indeterminacy; however, nearby holomorphic maps exhibit very similar behavior.) Four of the six
examples from the Desboves family, belong to the “two-thirds” subfamily of Definition 4.6.

Note on Pictorial Conventions. Each of the color pictures which follow shows the real projective
plane, represented as a unit 2-sphere with antipodal points identified, oriented as in Figure 1. Thus
the x-axis, pointing towards the right, and the y-axis, pointing almost vertically, are close to the plane
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of the paper, while the z-axis points up out of the paper. (Because of this choice of orientation, we
will sometimes refer to the coordinate point (0 : 1 : 0) near the top of the picture as the north pole.)
The Fermat curve x3 + y3 + z3 = 0 is traced out in white. In Figures 3 and 4, other points are colored
from red to blue according as their orbits converge more rapidly or more slowly towards this Fermat
curve, and subsequent figures use various modifications of this scheme. As an example, in Figure 3 the
equator y = 0 shows up as a blue circle, since orbits in the invariant line y = 0 cannot converge to F ,
hence orbits near this line cannot converge rapidly towards F .

In the complex case, we cannot illustrate the map directly. However, the graphs to the right of
Figures 3, 4, 5, 6, 10, 11 describe one more or less typical randomly chosen orbit for the associated
complex map. Here each orbit point (x : y : z) has been normalized so that |x|2 + |y|2 + |z|2 = 1 .
The horizontal coordinate measures the number of iterations, while the vertical coordinates in each of
the four stacked graphs represent respectively |x|2 , |y|2 , |z|2 , and |Φ(x, y, z)| .

Example 5.1. The Fermat Curve as a Global Attractor? If we choose Desboves parameters
(b − 2

3 , b , b + 2
3) with |b| small, then the transverse Lyapunov exponent is negative in both the real

and complex cases. Numerical computation suggests that nearly all orbits actually converge to the
Fermat curve. (Perhaps even all but a set of measure zero?) As an example, consider the case
(a, b, c) = (−2

3 , 0 , 2
3). Using the Gnu multiple precision arithmetic package, and starting with several

thousand randomly chosen points on the real or complex projective plane, we found that all orbits
land on the curve, to the specified accuracy, within a few hundred iterations. Of course, even if we
could work with infinite precision arithmetic, such a computation could not prove that a given orbit
converges to the curve, and also could not rule out the possibility of other attractors with extremely
small basins. In fact it seems possible that periodic attractors with high period and small basin exist
for a dense open set of parameter values. This case b = 0 is rather special in one way, since the map
f−2/3 , 0 , 2/3 has points of indeterminacy; namely those points where (x3 : y3 : z3) is equal to either
(1 : 7 : 1) or (0 : 1 : 0). However, the behavior for small non-zero values of b seems qualitatively similar.
In fact, according to Figure 2 which graphs the real and complex transverse Lyapunov exponents, the
most attracting case within the two-thirds family occurs for b = ± 1

9 , which we discuss next.

Example 5.2. An Even Stronger Attractor. The case b = ± 1
9 yields an even more strongly

attracting Fermat curve, as illustrated in Figure 3. The transverse derivative has a simple zero at the
point (−1, 1, 0)/

√
2 to the upper left of the figure, and a double zero at the point (0,−1, 1)/

√
2 near

the bottom. A numerical search suggests that this is the most attracting example within the real or
complex Desboves family, in the sense that the transverse exponent takes its most negative value of
−2.0404 . . . for the real map or −0.6801 . . . for the complex map. Certainly these are the extreme
values for real parameters within the two-thirds family, as graphed in Figure 2.

Example 5.3. Another Global Attractor? If we take Desboves coordinates ( 1
3 , 0 , −1

3), then
again the Fermat curve seems to attract nearly all orbits. Compare Figure 4. Here the transverse
derivative has a double zero at the fixed point (−1 : 0 : 1) in the middle of the large red region. It is
a curious fact that the transverse exponents in this case are precisely the same as those for Example
5.1, namely −1.456 · · · for the real map, or −.549 . . . for the complex map.

Example 5.4. A Cycle of Herman Rings? Now suppose that we choose Desboves parameters
in the two-thirds family, with (a, b, c) equal to (− 1

5 ,
7
15 ,

17
15). Here the transverse exponent is −.509 · · ·

for the real map, but +.402 · · · for the complex map. Thus we can expect the Fermat curve to be
an attractor in the real case, but not in the complex case. The left half of Figure 5 illustrates the
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|x|2

|y|2

|z|2

0 200

|Φ|

Figure 3: (Example 5.2.) On the left: dynamics on the real projective plane for the Desboves
map in the two-thirds family with parameters (a, b, c) = (− 5

9
, 1

9
, 7

9
) . The sphere is oriented as

in Figure 1. On the right: plot of |x|2 , |y|2 , |z|2 and |Φ| as functions of the number of
iterations for a typical randomly chosen complex orbit. Here each orbit point (x : y : z) has been
normalized so that |x|2 + |y|2 + |z|2 = 1 . In this run, it took 23 iterations to come close enough
to the Fermat curve so that |Φ| appears to be zero on the graph.

|x|2

|y|2

|z|2

0 200

|Φ|

Figure 4: (See Example 5.3.) For the map with Desboves parameters ( 1

3
, 0 , − 1

3
), the Fermat

curve again seems to attract all or nearly all orbits in both the real and complex cases.



16 Elliptic Curves as Attractors in P
2, Part I
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Figure 5: (Example 5.4.) Dynamics for the parameters (− 1

5
, 7

15
, 17

15
). Left: In the real case

there are two attractors. The basin of the Fermat curve is colored as in Figures 3, 4. However,
the two small white circles also form an attractor. The corresponding basin is shown in dark grey.
Right: A typical randomly chosen orbit for the complex map. This orbit often comes very close
to the Fermat curve during the first 4000 iterations, but then seems to converge to a cycle of two
Herman rings.

|x|2

|y|2

|z|2

0 200

|Φ|

Figure 6: (Example 5.5 .) Plots for the map with Desboves parameters (−1.4 , −.8 , 1.4) . Here
the coloring is as in the previous figures except that it describes convergence to the “equator”
y = 0, rather than to the invariant Fermat curve. For this map, the “north pole” (0 : 1 : 0) also
attracts many orbits.
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dynamics in the real case. Numerical computation suggests that some 83% of the orbits converge to
the Fermat curve, while the remaining 17% converge to a pair of small circle. The attractive basin for
this pair of circles is conjecturally a dense open subset of P

2(R). The map f = fa,b,c carries each of these
circles to the other, reversing orientation, while f ◦ f carries each circle to itself with rotation number
±0.18587 · · · . Of course such a phenomenon can be expected to be highly sensitive to small changes in
the parameters—We cannot really distinguish between a rotation circle with irrational rotation number
and one with a rational rotation number which has very large denominator (although the later would
necessarily contain a periodic orbit).

In the complex case, the Fermat curve is no longer an attractor. In fact, almost all orbits seem to
eventually land near this cycle of circles and then to behave just like an orbit on a pair of nearby circles
with the same rotation number. This suggests that most orbits converge to a cycle of two Herman rings

in P
2(C), with the pair of real circles as their central circles. A completely equivalent conjecture would

be that these circle are real analytic, or that they are contained in the Fatou set. (For a more detailed
discussion of Herman rings in P

2(C), see §8.) Again we must be cautious, since such a phenomenon
must be highly sensitive to perturbations; but the empirical evidence certainly suggests the existence
of a cycle of two Fatou components which could only be the immediate basins for attracting Herman
rings.5 (The convergence is very slow, and there may be other much more chaotic attractors.) These
attracting circles persist under small perturbation of the parameters. (Compare Theorem 8.12.) A
plot of the rotation number for these circles as a function of the parameter c, keeping a and b fixed,
is shown in Figure 7. If these circles remain real analytic, under suitable conditions on the rotation
number, then we would have a cycle of two Herman rings for many nearby maps. It seems empirically
that is true, but we have been unable to prove it. (Compare Remark 8.14.)

Example 5.5. The Line z = 0 as a Measure Theoretic Attractor? (Compare Figure 6.)
For the parameter values (a, b, c) = (−1.4 , −.8 , 1.4), the Lyapunov exponent turns out to be strictly
positive, equal to 0.247 . . . in the real case, or to 0.352 . . . in the complex case. The invariant Fermat
curve does not seem to play any significant dynamical role in this case. On the other hand, the equator
y = 0 seems to be at least a measure-theoretic attractor; and there is also an attracting fixed point at
the north pole (0 : 1 : 0). In fact many randomly chosen real or complex orbits converge to the north
pole (0 : 1 : 0), but even more seem to converge to the equator.

Example 5.6. A Composite Statistical Attractor? For the real or complex map with Desboves
parameters (1

3 , 1 , 5
3), as illustrated in Figure 10 for the real case, typical orbits seem to spend a great

deal of time quite close to the Fermat curve F even though the transverse exponent is strictly positive,
equal to 0.081 . . . in the real case or to 1.032 . . . in the complex case. This curve by itself is only a
“transient attractor,” since nearby orbits often seem to be attracted, but eventually get kicked away
from it. However, the union

A = {x = 0} ∪ {y = 0} ∪ {z = 0} ∪ F , (15)

or in other words the variety x y zΦ(x, y, z) = 0 , does seem to behave like an attractor, at least in
a statistical sense. (Compare Remark 5.7.) Typical orbits seem to spend most of the time extremely

5These conjectured Herman rings cannot extend to Siegel disks. For if there were such an extension, then this disk
together with its complex conjugate would yield an immersed curve C of genus zero, mapped to itself by an irrational
rotation, so that degf |C = 1. Such a curve would be algebraic by Chow’s Theorem [Chow 1949]; but this situation is
impossible by the discussion in Definition 2.1.
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Figure 7: An empirical plot of the rotation number for the pair of attracting circles in P2(R) as a
function of the parameter c in Example 5.4, keeping a and b fixed. Presumably for each rational
value for the rotation number there corresponds an entire plateau of c values for which the pair
of circles contains an attracting periodic orbit. Only the plateaus of height 1

5
and 1

6
are visible

in this figure; but with higher resolution, tiny blips at height 3

16
and 2

11
would also be visible. As

c decreases past 1.12 the attracting circles shrink to points; while as c increases past 1.144 they
expand until they break up upon hitting the boundary of their attracting basin. It is conjectured
that whenever the rotation number is Diophantine, the corresponding pair of circles in P

2(R) are
contained in a pair of Herman rings in P2(C).

close to this variety. However, they do not stay in any one of its four irreducible components, but
sometimes jump from one component to another. Furthermore, it seems likely that typical orbits will
escape completely from a neighborhood of this variety, very infrequently but infinitely often.

Here is a more detailed description, as illustrated in Figure 8. To fix ideas, we will refer to the
real case; but the complex case is not essentially different. A randomly chosen orbit seems to spend
most of the time either wandering chaotically very close to the Fermat curve or else almost stationary,
very close to one of the four saddle fixed points (the black dots in Figure 8). However, such an orbit
does not seem to stay close to any one of the four components of this variety forever. For example,
it is likely to escape from the neighborhood of the Fermat curve F when it comes very close to the
strongly repelling point F ∩ {y = 0} which is circled in Figure 8. It will then shadow the coordinate
line y = 0 , jumping quickly to a small neighborhood of the saddle point x = y = 0 , and then slowly
coming closer to this point for thousands of iterates. Again it must eventually escape, now shadowing
the line x = 0 and jumping quickly either towards the saddle point F ∩ {x = 0} or towards the
saddle point x = z = 0 . In either case it again spends a long time approaching this saddle point, but
then escapes. In the first case, it is now very close to the Fermat curve and shadows it for a long time
with a highly chaotic orbit before starting the cycle again. In the second case where it escapes near
the saddle point x = z = 0 , it then shadows the line z = 0 as it quickly converges towards the saddle
point F ∩ {z = 0} , where it again remains for a long time before repeating the cycle.
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Fermat curve

y=0

x=0

z=0

Figure 8: Schematic diagram illustrating Example 5.6.

Remark 5.7. Statistical Attractors. Such examples have led authors such as [Gorodetski and
Ilashenko 1996] and [Ashwin et al. 1998] to suggest modified definitions of attractor, emphasizing not
the omega-limit set of a typical orbit, but rather its asymptotic probability distribution. As a typical
example, think of a dynamical system in the plane in which orbits spiral out towards a limit cycle
Γ which consists of a homoclinic loop, beginning and ending at a fixed point p. Then the unique
“measure theoretic attracting set” for the region inside the loop is the entire loop Γ. No orbit starting
inside actually converges to the point p. However, every orbit starting inside the loop spends most

of its time apparently converging to p, with a statistically insignificant (but infinite) collection of
exceptional times. Thus Gorodetski and Ilyashenko, or Ashwin, Aston and Nicol, describe this point p
as a “statistical attractor.” Here is a more formal definition, which makes sense in any smooth compact
manifold (provided with a metric for convenience). By definition, an orbit {xn} converges towards a
compact set A if the distance d(xn, A) tend to zero as n→ ∞.

Definition. The orbit x0 7→ x1 7→ · · · converges statistically towards A if the time average of
distances tends to zero,6

1

n

(
d(x0, A) + d(x1, A) + · · · d(xn−1, A)

)
→ 0, as n→ ∞.

Thus occasional orbit points are allowed to wander away from A, as long as most of them converge. Now
given a preferred measure on the ambient space, we can describe A as a (minimal) statistical attractor
if the union of orbits which converge statistically to A has positive measure, and if no smaller compact
set has this property. In particular, in Example 5.6, we conjecture that the Fermat curve together
with the two isolated points where x = 0 and yz = 0, forms a statistical attractor (and perhaps even
a “global” one, statistically attracting everything outside of a set of measure zero).

6Since the ambient space is compact, an equivalent condition would be that every point q 6∈ A has a neighborhood
U such that (1/n)

`
χ

U
(x0) + χ

U
(x1) + · · ·χ

U
(xn−1)

´
→ 0 as n → ∞ ; where χ

U
: P

2 → {0, 1} is the characteristic
function of U .
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Figure 9: A plot of 200 iterations with a random start for the degree three map of Example 5.8,
taking parameters (a, b, c) = (0, γ,−1)/2,

Example 5.8. A Family of Degree Three Maps. In the case of a map of degree three (or
indeed for any degree which is not a perfect square), the multiplier on an invariant elliptic curve cannot
be a real number. Hence we can only consider the complex case—we cannot describe both the map
and the invariant curve by equations with real coefficients.

Here is one explicit family of complex degree three maps which send the Fermat curve F into itself
[Bonifant and Dabija 2002, p. 17]. As in §4, we start with a rather degenerate self-map of P

2. Let

H0(x, y, z) =
(
` xyz , y3 − γz3 , z3 − γy3

)

where γ is the cube root of unity (−1 + i
√

3)/2 and where ` 3 = 3(γ2 − γ). (For example ` = 1− γ or
` = i

√
3.) Then the associated map

h0(x : y : z) =
(
` xyz : y3 − γz3 : z3 − γy3

)

of projective space has a first integral Φ/Ψ, where Φ(x, y, z) = x3 + y3 + z3 and Ψ(x, y, z) = x3. In fact
a brief computation shows that

Φ(H0(x, y, z))/Φ(x, y, z) = Ψ(H0(x, y, z))/Ψ(x, y, z) = 3 y3z3 ,

and it follows immediately that the rational function Φ/Ψ is invariant under h0. In particular, the
Fermat curve, defined by Φ = 0, is h0-invariant. However, in contrast to the Desboves case of §4, the
various elliptic curves Φ/Ψ = constant ∈ Cr{1} are all mutually isomorphic. (A similar example will
be described in Remark 6.9.) The map h0 has just one point of indeterminacy, namely (1 : 0 : 0); and
this point is not on F .

Like all maps of P2 with first integral, h0 is not very interesting as a dynamical system (see
Lemma 3.1), but it does embed in a family of more interesting maps. Consider the 3-parameter
family of homogeneous polynomials

H = Ha,b,c = H0 + (a, b, c)Φ .
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|x|2

|y|2

|z|2

0 10000

|Φ|

Figure 10: (Example 5.6.) On the left: Corresponding figure for the real Desboves map with
parameters ( 1

3
, 1 , 5

3
), again describing convergence to (or at least coming close to) the Fermat

curve. On the right: One randomly chosen orbit for the complex map through 10000 iterations.

|x|2

|y|2

|z|2

0 400

|Φ|

Figure 11: (Example 6.6.) Plots for the “elementary map” with parameters (a, b, c) = (−1 , 1

3
, 1).

In this case, every great circle through the north pole (0 : 1 : 0) maps to a great circle through the
north pole. There are three attractors: the Fermat curve F , the equator {y = 0} , and the north
pole, each marked in white. The corresponding attracting basins are colored red, blue, and grey
respectively. (However, the closely intermingled blue and red yield a purple effect.) The graphs
on the right show an orbit which nearly converges to {y = 0} but then escapes towards F .
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Figure 12: (Example 7.1.) The Cassini quartic with parameter k = 1

8
, shown in black, consists

of an outer circle C0(R) with two self-intersections and a much smaller inner circle C1(R). Here
the warmer colors describe convergence towards C0(R) for the rational map f1 with parameter
a = 1. The blue region is the basin of a superattracting fixed point at (0 : 0 : 1), while the grey
region is the basin of another attracting fixed point directly above it at (0 : 1 : 2).

Figure 13: Corresponding picture for the same Cassini quartic with k = 1

8
, but using the map

with parameter a = 2

5
.
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Each of the associated maps ha,b,c of the projective plane carries the Fermat curve F to itself with
degree three and multiplier γ `. There is only one fixed point of ha,b,c on F , namely (0 : −1 : 1).

First consider the one complex parameter subfamily of degree three maps satisfying the conditions
that

a = b+ γc = 0 ,

with x = 0 as invariant line. (The use of these special parameters simplifies the computation of the
transverse Lyapunov exponent.) When b = γ/2, the transverse Lyapunov exponent takes its most
negative value of -1.647918. Thus F appears to be more strongly attracting under this map than under
any of the complex Desboves maps, where the most negative transverse exponent was −0.6801 · · · .
(See Example 5.2. Such computations will be explained in Part 2 of this paper.) In Figure 9, we
illustrate the extraordinary attracting properties of the Fermat curve for this map. Most randomly
chosen points seemed to hit the Fermat curve, up to the resolution of the graph, after only 6 or so
iterations. (Compare with the right hand sides of Figures: 3, 4 and 11.)

It is also interesting to consider the subfamily consisting of maps ha, 0, 0 with b = c = 0. These are
“elementary maps” (Definition 6.1). For this particular elementary family, we suspect on the basis of
computer experiments that the transverse exponent is always non-negative, so that the Fermat curve
is never an attractor.

Example 5.9. The Degree Two Case. According to [Bonifant and Dabija 2002, Proposition
6.6], up to holomorphic conjugacy, there are exactly 20 distinct examples of holomorphic self-maps of
P2(C) of algebraic degree two with an invariant elliptic curve (or 10 distinct examples up to complex
conjugacy). See Example 6.9 of their paper for a detailed study of one of these degree two maps. (We
have not tried to study the other cases.) In this example, with multiplier equal to i

√
2, there are five

attracting cycles, with common basin boundary equal to the Julia set. Four of these are attracting
fixed points, and the fifth is an attracting period 2 orbit. Empirically, randomly chosen orbits for this
example always seem to converge to one of these five cycles.

6 Intermingled Basins

Finally we come to examples where we can provide complete proofs.

Definition 6.1. A rational self-map f of P2 with deg(f) > 1, is called elementary with center %0 if
and only if it leaves invariant the pencil of lines passing through %0 , i.e., every line through %0 maps
to a line through %0.

Elementary maps are easier to analyze than more general rational maps since we can separate the
variables to simplify the discussion.

Example 6.2. Elementary Desboves Maps. In particular, consider a Desboves map f = fa, b, c

as in formula (9) of §4, where the parameters a, b, c satisfy a = −1 and c = 1. Then the image
f(x : y : z) = (x′ : y′ : z′) satisfies

x′ = x(−x3 − 2z3) and z′ = z(2x3 + z3) .

It follows that each line (x : z) = constant through the coordinate point %0 = (0 : 1 : 0) maps
to another line (x′ : z′) = constant′ through %0. If we set X = x/z and X ′ = x′/z′ , then the
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Figure 14: On the left: Plot of the transverse Lyapunov exponent along the Fermat curve as a
function of the parameter b for the elementary family of Example 6.2, with Desboves parameters
(−1 , b , 1) . On the right: Corresponding plot for the transverse exponent along the line y = 0 .
In both cases, the graph for the complex map lies above the graph for the real map.

correspondence

f̂ : X 7→ X ′ = −X X3 + 2

2X3 + 1
(16)

does not depend on the choice of b . This rational map (16) is described as a Lattès map, since it is
the image of a rigid map on the torus F ∼= C/Ω under the semiconjugacy (x : y : z) 7→ (x : z) of
degree three. (In fact f̂ is conformally conjugate to the Lattès map described in Remark 4.8.) It has
an ergodic invariant measure which is smooth except at its critical values, the cube roots of −1. Over
the real numbers, f̂ is a covering map from the circle P

1(R) to itself with topological degree −2 .

Over either the real or complex numbers, if we think of P
2
r{%0} as a (real or complex) line-bundle

over the projective line P1 with projection Π : (x : y : z) 7→ (x : z) , then we have the commutative
diagram

P2r{%0} f→ P2r{%0}
Π ↓ Π ↓

P1
bf→ P1

(17)

where f carries each fiber into a fiber by a polynomial map, with coefficients which vary with the
fiber. As an example, for the two invariant fibers x = 0 and z = 0 we get the maps

(0 : y : 1) 7→ (0 : by4 + (1 + b)y : 1) and (−1 : y : 0) 7→ (−1 : by4 + (1 − b)y : 0)

respectively. If we exclude the degenerate case b = 0 (compare Remark 6.9), then these polynomial
maps all have degree four. Furthermore, the center point %0 = (0 : 1 : 0) is superattracting, and
serves as the point at infinity for each one. In the real case, these polynomial maps are all unimodal,
while in the complex case they all have 120◦ rotational symmetry.

Since the rational map f̂ of the base space has no attracting cycles, it follows that an elementary

map with invariant elliptic curve can have no attracting cycles other than its center point.
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In the special case of an elementary map, we can give a relatively easy proof that a negative trans-
verse exponent for any invariant elliptic curve implies that this curve is a measure-theoretic attractor.
Furthermore, in the case of an elementary Desboves map f we get a surprising bonus:

The invariant line {y = 0} is also carried into itself; and the resulting self-map is conjugate

to the Lattès map of Equation (16). Hence it also has a canonical ergodic invariant measure,

and a well defined transverse Lyapunov exponent.

According to Figure 14, for real values of b both of these transverse exponents are strictly negative
provided that |b| is fairly small and non-zero; hence the following theorem will imply that both
the Fermat curve and the line {y = 0} are measure attractors. For example, this is the case for the
elementary Desboves map with parameter b = 1

3 , corresponding to a minimum point in Figure 14–left.
(Compare Figure 11.)

THEOREM 6.3. Basins of Positive Measure. Let f be a real or complex elementary

map with an invariant elliptic curve C. If the transverse Lyapunov exponent Lyap C is strictly

negative, then the attracting basin B(C) , consisting of points whose orbit converges to C , has

strictly positive measure. In fact any neighborhood of a point of C intersects B(C) in a set

of positive measure. Similarly, if such an f has an invariant line L not passing through the

center, with strictly negative transverse exponent, then the attracting basin for this line has

positive measure, and intersects any neighborhood of a point of this line in a set of positive

measure.

In the complex case we can give a much more precise picture. (As usual, define the Fatou and Julia
sets as in Definition 1.3.) If p is any point of an invariant elliptic curve, then according to Bonifant
and Dabija in [2002, Theorem 5.4 and Proposition 6.16] the iterated preimages of p are everywhere
dense in the Julia set (see Remark 4.3); and furthermore:

PROPOSITION 6.4. The Fatou Set is a Dense Open Basin. If f is a complex

elementary map with an invariant elliptic curve, and if the center %0 is not a point of indeter-

minacy, then %0 is a superattracting fixed point whose basin coincides with the Fatou set. This

basin is connected and everywhere dense in P2. Furthermore, if U is a small neighborhood

of a point of the Julia set, then the union of the forward images of U is the entire space

P
2
r{%0} .

Proof. See [Bonifant and Dabija 2002, Pg. 18].

In particular, the conjectured Lemma 4.5 is true in this case: the attracting basin for the elliptic
curve has no interior points. Similarly, if there is an invariant line L disjoint from the center %0, then
the attracting basin of L cannot have any interior point. It also follows that f is topologically transitive
on the Julia set. This means that the orbit of a “generic” point of the Julia set J is everywhere dense
in J . Such a generic point of J cannot belong to any of the attracting basins B(C) , B(L), or B(%0).

COROLLARY 6.5. Intermingled Basins. If a complex elementary map has both an in-

variant line L which does not pass through its center, and an invariant elliptic curve C, then

the two topological closures B(C) and B(L) are both precisely equal to the Julia set. Further-

more, if the transverse Lyapunov exponent for C (or for L) is negative, then every neighborhood

U of a point of the Julia set intersects B(C) (or respectively B(L) ) in a set of positive Lebesgue

measure.
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Remark 6.6. Three Basins. In the case where the transverse exponents LyapC(f) and
LyapL(f) are both negative, it follows that the basins for these two attractors are intimately intermin-
gled. For the real Desboves map illustrated in Figure 11, a very rough estimate suggests that about
66% of the points in P

2 are attracted to the center (0 : 1 : 0) , about 17% to the line {y = 0} , and
about 17% to the Fermat curve. For the associated complex mapping, the figures are 81%, 13%, and
6%. (However, the computation is highly sensitive, and these estimates may well be quite inaccurate.)
It may be conjectured that every point outside of a set of measure zero lies in the union of these three
attracting basins.

Remark 6.7. Terminology. Such exotic behavior has been studied extensively, particularly in
the applied dynamics literature. The term “riddled basin” was introduced in [Alexander et al. 1992] to
indicate an attracting basin whose complement intersects every disk in a set of positive measure. They
define two basins to be intermingled if every disk which intersects one basin in a set of positive measure
also intersects the other basin in a set of positive measure. For a particularly clear example, see [Kan
1994]. Such examples of intermingled basins seem to be known only in cases where the attractors
themselves are quite smooth—We don’t know whether there can be two fractal attractors whose basins
have the same closure.

Proof of Theorem 6.3. Without loss of generality, we may assume that the center %0 of the real
or complex elementary map f is (0 : 1 : 0) 6∈ If . Furthermore, if there is an invariant line not passing
through this center, we may assume that it is the line {y = 0}, as in Figure 11. (Since we assume
that there is an invariant elliptic curve C, it follows that any invariant line not passing through the
center is mapped to itself by a Lattès map, with an absolutely continuous invariant measure so that
the transverse Lyapunov exponent is well defined.) Each fiber (x : z) = constant of the fibration
Π(x : y : z) = (x : z) can be provided with a flat metric

|dy|/
√
|dx|2 + |dz|2 , (18)

which gives rise to a norm ‖~v ‖t for vectors tangent to the fiber. Let

‖f ′t(p)‖ = ‖f ′~v ‖t/‖~v ‖t

be the norm of the partial derivative along the fiber; where ~v can be any non-zero vector tangent to
the fiber at p . (Note that any vector tangent to its fiber must map to a vector tangent to the image
fiber.) This norm is well defined, depending only on the base point p of ~v . At points of the curve C ,
we want to compare ‖~v ‖t with the semi-definite norm ‖~v ‖ which is obtained by first projecting ~v
to the quotient vector space T (P2, p)/T (C, p) and then using a positive definite norm in this quotient
space. Note that most fibers intersect the degree three curve C transversally in three distinct points.
There are only a finite number of exceptional fibers which intersect tangentially. Therefore the ratio
‖~v ‖ /‖~v ‖t ≥ 0 is a continuous function on C which vanishes only at these points of tangency.
Furthermore, the logarithm `(p) of this ratio has only logarithmic singularities, and hence is an
integrable function on C . Since the measure dλ is f -invariant, it follows that the difference

∫

C
log ‖f ′ ‖ dλ −

∫

C
log ‖f ′t‖ dλ =

∫

C
` ◦ f dλ −

∫

C
` dλ

is zero. In other words, the average value
∫
C log ‖f ′t‖ dλ coincides with the transverse exponent LyapC

of §2.
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For any p and q belonging to the same fiber, let δ(q, p) ≥ 0 be the distance of q from p , using
the flat metric of Equation (18) on this fiber. Then

δ(f(q), f(p)) = ‖f ′t(p)‖ δ(q, p) + o(δ(q, p))

as δ(q, p) tends to 0 . This estimate holds uniformly throughout a neighborhood of C. Hence, given
any ε > 0 , we can choose δ0 so that

δ(f(q), f(p)) ≤
(
‖f ′t(p)‖ + ε

)
δ(q, p) (19)

when p ∈ C and δ(q, p) < δ0 with Π(p) = Π(q) .
Choose ε small enough so that

∫

C
log

(
‖f ′t(p)‖ + ε

)
dλ(p) < 0 . (20)

Let p0 7→ p1 7→ · · · be the orbit of an arbitrary initial point p0 ∈ C under f . By the Birkhoff Ergodic
Theorem, the averages

1

n

(
log(‖f ′t(p0)‖ + ε) + log(‖f ′t(p1)‖ + ε) + · · · + log(‖f ′t(pn−1)‖ + ε)

)

converge to the integral of Equation (20) for almost all p0 ∈ C . In particular, for almost all p0 it
follows that the number

log
(
‖f ′t(p0)‖ + ε

)
+ log

(
‖f ′t(p1)‖ + ε

)
+ · · · + log

(
‖f ′t(pn−1)‖ + ε

)

is negative for large n. Thus the n-fold product
(
‖f ′t(p0)‖ + ε

)
· · · (‖f ′t(pn−1)‖ + ε

)

is less than one for large n, but equal to one by definition for n = 0. It follows that the maximum

M(p0) = max
n≥0

((
‖f ′t(p0)‖ + ε

) (
‖f ′t(p1)‖ + ε

)
· · · (‖f ′t(pn−1)‖ + ε

))
≥ 1

is well defined, measurable, and finite almost everywhere. If δ(q, p0) ≤ δ0/M(p0), then it follows from
the inequality of (19) that δ

(
f◦n(q) , f◦n(p0)

)
≤ δ0 for all n , and also that this distance converges to

zero as n→ ∞ . Now let S be the set of positive measure consisting of all q with δ(q, p) ≤ δ0/M(p)
for some p ∈ C with Π(p) = Π(q). (Here δ0/∞ = 0 by definition.) Then for all q ∈ S it follows that
the orbit of q converges to C . Evidently, S intersects every neighborhood of a point of C in a set
of positive measure. The proof for the basin of the line y = 0 is completely analogous.

Remark 6.8. What about Positive Transverse Exponent? Conversely, it seems natural
to conjecture that the basin of C has measure zero whenever the transverse Lyapunov exponent is
positive. One might guess that this could be proved simply by reversing the inequalities in the argument
above but this doesn’t work. The problem is that log

(
‖f ′t‖ − ε

)
is not a meaningful approximation

to log ‖f ′t‖ , since ‖f ′t‖ must sometimes be smaller than any given ε . In fact, almost every orbit near
C must pass arbitrarily close to the critical locus of f . But whenever p is very close to the critical
locus, there is a real possibility that f(p) will be much closer to C than would have been predicted
from the differential inequality. It seems unlikely that this effect could be strong enough to make C a
measure theoretic attractor in some cases where the transverse Lyapunov exponent is positive, but we
don’t know how to rule out the possibility. (Compare Remark 1.4.)
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Proof of Corollary 6.5. It follows immediately from Proposition 6.4 that the basins of C and
L are contained in the Julia set. On the other hand, if p ∈ C ∩ L then the iterated preimages of p
are contained in both basins, and are dense in J . (Compare Remark 4.3.) Therefore, the closure of
either basin is equal to J .

Now if the open set U intersects the Julia set, then it contains an iterated preimage of p . Since
f is an open mapping, it follows that some forward image f ◦n(U) is an open neighborhood of p .
If C (or L) has negative transverse exponent, then by Theorem 6.3 the image f ◦n(U) intersects the
corresponding basin in a set of positive measure. Choosing a regular value of f ◦n which is a point of
density for this intersection, and choosing a point q ∈ U which maps to this regular value, it follows
easily that any neighborhood of q intersects the corresponding basin in a set of positive measure.

Remark 6.9. The Special Case b = 0. The above discussion of elementary Desboves maps
f = f−1,b,1 always assumed that the parameter b is non-zero. For the case b = 0 , we have a much
simpler situation. The center (0 : 1 : 0) then becomes a point of indeterminacy. If we think of each
fiber V as a one-dimensional complex vector space, taking V ∩ L to be its zero vector, then each fiber
maps linearly to a fiber. In fact it is not hard to see that f is well defined as a holomorphic map from
the complement P

2
r{(0 : 1 : 0)} onto itself, and that this complement is “foliated” by f -invariant

curves x3 + ky3 + z3 = 0, which are isomorphic to the Fermat curve for k ∈ Cr{0}. (In particular,
the map f = f−1,0,1 has a first integral. Compare Lemma 3.1.) These invariant curves intersect only
in the finite set F ∩ L .

7 Trapped Attractors: Existence and Nonexistence.

The first half of this section will provide explicit examples of everywhere defined rational maps of P
2(R)

which have a smoothly immersed real curve of genus one as trapped attractor (Definition 1.1). The
second half will prove that a complex curve of genus one, can never be a trapped attractor.

Example 7.1. A Singular Real Quartic of Genus One as Trapped Attractor. This last
example will study the case of a singular real quartic. As in [Bonifant and Dabija 2002, §8.6], consider
the Cassini quartic curve C with homogeneous equation Φ(x, y, z) = 0 , where 7

Φ(x, y, z) = Φκ(x, y, z) = x2y2 − (x2 + y2)z2 + κz4 (21)

depends on a single parameter κ 6= 0, 1 . Over the complex numbers, this is a rational curve with
nodes at the two points (1 : 0 : 0) and (0 : 1 : 0) . That is, the uniformizing map C/Ω → C ⊂ P2(C)
has transverse self-intersections at these two points. Define a one-parameter family of homogeneous
polynomial maps from C3 to itself by the formula F (x, y, z) = Fa(x, y, z) = (X,Y,Z) , where

X = −2xy(x2 + y2 − 2κz2) , Y = y4 − x4 , Z = −aΦ(x, y, z) + 2xy(x2 − y2) . (22)

According to [Bonifant and Dabija 2002], the curve C is invariant under the induced rational map
f = fa : P2 → P2 . It is not hard to check that the singular point (0 : 1 : 0) ∈ C (the “north pole”
in Figures 12 and 13) is a saddle fixed point of fa , with eigenvalues −2 and 0, and that the point
(0 : 0 : 1) (near the center of these figures) is a superattracting fixed point whenever a 6= 0.

7This expression yields curves which are equivalent, under a complex linear change of coordinates, to quartic curves
introduced in 1680 by the French-Italian astronomer Giovanni Domenico Cassini, in connection with planetary orbits.
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If the parameters κ and a are real, then the corresponding real curve C(R) = C ∩ P2(R) is
connected when κ < 0 , but has two connected components when κ > 0. These maps are illustrated
in Figures 12 and 13 for the case κ = 1/8 > 0, with C(R) in black. Here the smaller component (which
is nonsingular) maps to the larger invariant component C0(R) (which has two singular points). Both
branches of C0(R) through the singular point (1 : 0 : 0) map to just one of the two branches through
the fixed point (0 : 1 : 0) while both branches through (0 : 1 : 0) map to the other branch through
(0 : 1 : 0). (All four branches lie within a single immersed circle which crosses itself twice within the
nonorientable manifold P

2(R).) Note the identities

F (−x,−y, z) = F (x, y, z) and F ◦2(−y, x, z) = F ◦2(x, y, z) ,

which imply that the Julia set of fa has a 90◦-rotational symmetry, clearly visible in Figures 12 and
13. We will prove the following result.

THEOREM 7.2. A Trapped Attractor. If 0 < |κ| < 1/4, and if a is sufficiently small,

then the invariant curve C0(R) is a trapped attractor for the map fa on the real projective plane

which is induced by (22).

Proof. Let (X,Y,Z) = F (x, y, z) . The quotient

ΦF (x, y, z) = Φ(X,Y,Z)/Φ(x, y, z)

is a polynomial of degree 12 in x, y, z, depending on the parameter a. In general this polynomial seems
rather complicated, but in the special case a = 0 computation shows that it takes the simple form

ΦF (x, y, z) = 16κx2y2(x2 − y2)4 . (23)

As a convenient measure of the distance of a point of P2 from the curve Φ = 0 we take the ratio

r(x : y : z) = |Φ(x, y, z)|/(x2 + y2)2 ,

with Φ as in (21). This ratio is well defined and finite except at the value r(0 : 0 : 1) = +∞, and it
vanishes only on the Cassini curve. We want to prove an inequality of the form

r(X : Y : Z) ≤ λ r(x : y : z) (24)

whenever r(x : y : z) is sufficiently small, where λ < 1 is constant. To do this, we consider the ratio

rf (x, y, z) =
r(X : Y : Z)

r(x : y : z)
=

∣∣∣∣
Φ(X,Y,Z)

Φ(x, y, z)

∣∣∣∣
(x2 + y2)2

(X2 + Y 2)2
.

In the special case a = 0, using the identity (23) and the inequality

X2 + Y 2 ≥ Y 2 = (y4 − x4)2 = (x2 + y2)2(x2 − y2)2 , (25)

together with |2xy| ≤ x2 + y2, we see that

r(X : Y : Z)

r(x : y : z)
≤

∣∣∣∣
Φ(X,Y,Z)

Φ(x, y, z)

∣∣∣∣
(x2 + y2)2

(x2 + y2)4(x2 − y2)4
=

16|κ|x2y2

(x2 + y2)2
≤ 4|κ| .
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If 0 < |κ| < 1/4 , then we can choose λ so that 4|κ| < λ < 1 . If N is any compact subset
of P2(R)r{(0 : 0 : 1)}, then for any a which is sufficiently close to zero it then follows by continuity
that the required inequality (24) holds uniformly throughout N . Thus all orbits of fa in N converge
uniformly towards the subset C(R). In the case where there are two components, the image fa(C(R))
is necessarily equal to the component C0(R) ⊂ C(R) which contains the fixed point (0 : 1 : 0); and it
follows that all orbits in N converge uniformly to C0(R).

Remark 7.3. The Case a = 0 . In the limiting case a = 0 , there is no superattracting point, and
in fact (0 : 0 : 1) becomes a point of indeterminacy. It follows easily from the argument above that
the basin of C0(R) under this limiting map f0 is the entire domain of definition P

2(R)r{(0 : 0 : 1)} ,
provided that 0 < |κ| < 1/4 .

The complex case is quite different, since a complex genus one curve can never be a trapped
attractor. The proof will occupy the rest of this section.

THEOREM 7.4. No Complex Trapping. Let C ⊂ P
2 = P

2(C) be a genus one curve and

let N be a neighborhood of C. Then there cannot exist any holomorphic map f : N → N
mapping C onto itself such that

⋂
n f

◦n(N) = C.

We first carry out the argument for an elliptic curve (necessarily of degree three), and then show
how to modify the proof for a singular genus one curve (necessarily of degree greater than three). The
proof for a smooth C will be based on the following construction.

Definition. Let Nε be the ε-neighborhood consisting of all points with distance less than ε from C,
using the standard Fubini-Study metric8 on P

2. If C is smooth and ε is sufficiently small, then Nε is the
total space of a real analytic fibration Π : Nε → C, where Π(p) is defined to be that point q ∈ C which is
closest to p. Furthermore, although this projection map Π is not holomorphic, each fiber Fq = Π−1(q)
is a holomorphically embedded complex disk which is contained in the complex line orthogonal to C
at q.

LEMMA 7.5. Curves in a Neighborhood. With C ⊂ Nε as above, any non-constant

holomorphic map ϕ : C1 → Nε from an elliptic curve into Nε must be an immersion, and must

intersect each fiber Fq transversally, so that the composition Π◦ϕ is a real analytic immersion

of C1 onto C of positive degree.

In other words, C1 is a (real analytic) k-fold covering surface of C, where k ≥ 1 is the degree of
Π ◦ ϕ.

Proof of Lemma 7.5. Suppose to the contrary that there exists a critical point for the composition
Π ◦ ϕ : C1 → C. It will be convenient to rotate the coordinates for P2 as follows. Using (x, y) as an
abbreviation for the point with coordinates (x : y : 1), we may assume that the critical value in C ⊂ P2

has coordinates (0, 0) and that the tangent line to C at this critical value has equation y = 0. The
fiber through this point is then a disk in the line x = 0. Choose a parametrization t 7→

(
x(t), y(t)

)

for C so that x(0) = y(0) = 0, y′(0) = 0, and choose a parametrization s 7→
(
x1(s), y1(s)

)
for ϕ(C1)

8In terms of homogeneous coordinates (x0 : x1 : · · · : xn) normalized so that
P

|xk|
2 = 1, this metric takes the form

dt2 =
P

|dxk|
2 − |

P
xk dxk)|2. With this normalization, the Riemannian distance 0 ≤ θ ≤ π/2 between two points

(x : y : z) and (u : v : w) of P
2 can be computed by the formula cos(θ) = |xu + yv + zw| .
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so that the critical point in C1 is
(
x1(0) , y1(0)

)
= (0, y0), lying in the fiber x = 0. Now expand the

function x1(s) as a power series

x1(s) = c sn + (higher order terms) ,

with c 6= 0. Here n ≥ 2, since otherwise ϕ(C1) would cross the fiber x = 0 transversally.
Using coordinates (x, y) for Nε near the point (0, 0) and using the parameter t for C, we can think

of the real analytic projection Π : Nε → C as a correspondence (x, y) 7→ t = t̂(x, y). Setting y = y0 +η,
we can write the power series expansion for t̂(x, y) at the point (0, y0) =

(
x1(0), y1(0)

)
as

t̂(x, y0 + η) = x
(
a1 + (a2x+ a3x+ a4η + a5η) + · · ·

)
+ x

(
b1 + (b2x+ b3x+ b4η + b5η) + · · ·

)
,

where the dots stand for terms of degree ≥ 2 in x, x, η, and η, and where the aj and bj are complex
numbers with |a1| > |b1| since the projection from (x, y0) to its image in C must preserve orientation
for x near 0. (Here we can assume that b2 = a3.) Therefore the composition s 7→ (x1(s), y1(s)) 7→ t̂
has power series

t̂ = a1 c s
n + b1 c s

n + (higher order terms) .

This proves that the composition Π ◦ ϕ : C1 → C has an isolated critical point of local degree n ≥ 2
(and hence multiplicity n − 1 ≥ 1) at the point s = 0. Thus every critical point is isolated, and it
follows that Π ◦ ϕ is a branched covering, with only finitely many critical points.

Although Π◦ϕ is not actually holomorphic, it behaves topologically just like a holomorphic map, so
that we can apply the Riemann-Hurwitz Theorem. (Compare Remark 2.2.) Thus the Euler character-
istic χ(C1) is equal to k χ(C)−ν, where k is the degree of Π◦ϕ and where ν is the number of critical
points counted with multiplicity. Since χ(C1) = χ(C) = 0, this proves that ν = 0, as required.

In particular, it follows easily that the composition Π ◦ ϕ : C1 → C is quasiconformal.
Definition. The complex dilatation of a C1-smooth map z 7→ g(z) is the ratio

µg(z) = (∂g/∂z)/(∂g/∂z) ∈ C ∪∞ .

Such a map is quasiconformal 9 if and only if |µg| < constant < 1. (This absolute value is sometimes
known as the “small dilatation” of g, while the ratio

K(z) = (1 + |µg|)/(1 − |µg|) ≥ 1

is called the dilatation.)
Now consider an infinite sequence of holomorphic immersions ϕj : Cj → Nε, where each Cj is a

compact Riemann surface of genus one.

LEMMA 7.6. Converging Quasiconformal Maps. If the successive images ϕj(Cj) con-

verge to C in the Hausdorff topology (or in other words if the distance of each point of ϕj(Cj)
from C converges uniformly to zero), then the complex dilatation of the quasiconformal map

Π ◦ ϕj : Cj → C converges uniformly to zero as j → ∞.

The proof of Lemma 7.6 will be based on the following preliminary statement, which is needed in
order to control first derivatives.

9For general quasiconformal maps which need not be C1-smooth, see [Ahlfors 1966] or [Krushkal′ 1979].
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LEMMA 7.7. Converging Tangent Spaces. With the ϕj as in Lemma 7.6, consider a

sequence of points ϕj(pj) ∈ ϕj(Cj) converging to a point q ∈ C. Then the tangent space to

ϕj(Cj) at ϕj(pj) converges to the tangent space to C at q. Furthermore, this convergence is

uniform as we vary the points pj and q.

Proof. In fact the argument will show that each branch of the curve ϕj(Cj) converges holomorphi-
cally to C throughout a neighborhood of q. As in the proof of Lemma 7.5, we can choose coordinates
(x, y) so that (0, 0) corresponds to the point q and so that the line y = 0 is tangent to C at q. Then
the curve C is locally the graph of a holomorphic function y = ψ0(x). We can fiber a neighborhood of
(0, 0) by a local projection into C, mapping each (x, y) to the point Π0(x, y) =

(
x, ψ0(x)

)
∈ C. For any

immersion ϕj : Cj → P2 with image in a small neighborhood of C, we claim that the image of ϕj crosses
the line x = 0 transversally near (0, 0). To prove this, we must smoothly interpolate between the
projection Π : Nε → C of Lemma 7.5 which is defined everywhere near C and the projection Π0 which
is well behaved only near (0, 0). Using such a modified projection, which coincides with Π outside of a
neighborhood of (0, 0) and which coincides with Π0 within a smaller neighborhood, the proof proceeds
just as before.

Now any branch of one of these approximating curves ϕj(Cj) near (0, 0) can be described locally as
the graph of a holomorphic function y = ψj(x). Choosing a sequence of such branches which converge
uniformly to ψ0, it follows from a theorem of Weierstrass that every iterated derivative dkψj(x)/dx

k

converges uniformly to dkψ0(x)/dx
k throughout a slightly smaller neighborhood, as required.

Proof of Lemma 7.6. With coordinates (x, y) as above, let t 7→
(
x(t), y(t)

)
be a local parametriza-

tion of the curve C with x(0) = y(0) = 0, y′(0) = 0. It will be convenient to construct new local
holomorphic coordinates (u, v) by the formula

(x, y) =
(
x(u), y(u) + v

)
.

In these new coordinates, the curve C has equation v = 0. The projection Π is then represented by a
real analytic map (u, v) 7→ t̂(u, v), where t̂(u, 0) = u, so that ∂t̂/∂u = 1 and ∂t̂/∂u = 0, when v = 0.
For j large, we can choose s = u as parameter for the nearby curve ϕj(Cj), so that the parametrization
takes the form s 7→

(
uj(s), vj(s)

)
with uj(s) = s. For the composition s 7→ t̂(s, vj(s)), it follows that

∂t̂

∂s
=

∂t̂

∂u
+

∂t̂

∂v
dvj/ds ,

where ∂t̂/∂u tends to zero as vj → 0 by the remarks above, and where dvj/ds tends to zero as vj → 0
by Lemma 7.7. It follows easily that the complex dilatation

µΠ◦ϕ = (∂t̂/∂s) / (∂t̂/∂s)

tends to zero as j → ∞, as required.

Proof of Theorem 7.4 for an embedded curve. The proof will be based on the fact that any
elliptic curve C ⊂ P2(C) can be approximated arbitrarily closely by other elliptic curves which are not
conformally isomorphic to it. For example, after a linear change of coordinates, any such C is defined
by an equation of the form x3 + y3 + z3 = 3κxyz, and by varying the parameter κ we can then find
nearby curves which are not conformally isomorphic to C.
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gm

f˚m

f˚m

Π

Figure 15: Construction of the retraction gm from Nδ to C.

Now assume that C is a trapped attractor. Let Nε be a tubular neighborhood, as in Lemma 7.5.
Then we can chose a trapping neighborhood Ntrap ⊂ Nε and then a smaller tubular neighborhood Nδ,
so that

C ⊂ Nδ ⊂ Ntrap ⊂ Nε .

We will then construct a sequence of real analytic retractions gm : Nδ → C of the form

gm = f−m ◦ Π ◦ f◦m .

More precisely, since f−m is not uniquely defined, we will construct gm : N → C so that

f◦m ◦ gm = Π ◦ f◦m ,

with gm equal to the identity map on C. (Compare Figure 15. Here Π : Nε → C is again the orthogonal
projection which carries each p ∈ Nε to the closest point of C.) To do this, let us first pass to the
universal covering spaces C̃ ⊂ Ñδ ⊂ Ñε. (Since C ∼= C/Ω, it follows that C̃ ∼= C.) Then f and Π lift to
smooth maps

C̃ ⊂ Ñδ

ef−→ Ñε
eΠ−→ C̃ ,

where we can choose the lift so that Π̃ reduces to the identity map on C̃. Since f̃ is a linear map of
C̃ ∼= C, it follows that f̃−1 is well defined. Therefore the map

g̃m = f̃−m ◦ Π̃ ◦ f̃◦m : Ñδ → C̃

is well defined; and reduces to the identity map on C̃. Finally, since g̃m commutes with the group
of deck transformations10 of Ñδ over Nδ, it follows that g̃m gives rise to a corresponding retraction
gm : Nδ → C.

Let C′ ⊂ Nδ be a smoothly embedded elliptic curve which is not conformally equivalent to C.
Then it follows using Lemma 7.5 that each gm maps C′ diffeomorphically onto C. Furthermore, since
the successive images f◦m(C′) must converge towards C, it follows from Lemma 7.6 that the complex

10On the other hand, the lifted map ef does not commute with deck transformations. In fact, if G is the group of deck
transformations, then f induces an embedding f∗ : G → G, with ef(σep) = f∗(σ) ef(ep) for each σ ∈ G.
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dilatation of the immersion Π◦f ◦m : C′ → C tends to zero as h→ ∞. Since f ◦m is locally biholomorphic
on both C ′ and C, this implies that the complex dilatation of gm : C′ → C also tends to zero as h→ ∞.
Thus, to complete the proof of Theorem 7.4, we need only note the following well known statement
from Teichmüller theory.

LEMMA 7.8. A Conformal Isomorphism Criterion. Suppose that there exist quasicon-

formal homeomorphisms from the elliptic curve C1 to C2 with complex dilatation arbitrarily

close to zero. Then C1 must be conformally isomorphic to C2.

Proof. This is an immediate consequence of compactness of the space of quasiconformal homeo-
morphisms with bounded complex dilatation. On a more elementary level, if C1

∼= C/Ω1 and C2
∼= C/Ω2

where Ω1 and Ω2 are unimodular lattices, then the optimal quasiconformal map in any homotopy class
is given by a real-linear map, corresponding to a linear transformation L ∈ SL(2,R) with L(Ω1) = Ω2.
(Compare [Krushkal′ 1979, p. 101].) Such a linear transformation has complex dilatation zero only if
L is a rotation. Similarly if a sequence of elements of SL(2,R) has complex dilatation converging to
zero, then some subsequence must converges to a rotation, and the conclusion of Lemma 7.8 follows
easily. This completes the proof of Theorem 7.4 for the case of an embedded curve.

Proof in the Singular Case. Now consider a genus one curve C ⊂ P
2(C) with singular points

(necessarily of degree four or more). Thus the uniformizing map ι : C/Ω → C must have either critical
points or self-intersections or both. As usual, assume that C is invariant under a rational self-map f of
P

2. We will first prove the following preliminary statement.

LEMMA 7.9. The Branches Fold Together. If C is a trapped attractor under some

rational map f of P2, then the uniformizing map ι : C/Ω → C is necessarily an immersion.

In particular, C cannot have any cusps. Furthermore, some iterate f ◦n must map all of the

branches of C through any singular point p into a single branch through f ◦n(p).

Proof. Recall that the map f restricted to C lifts to a linear map, which we will denote by f ],
from C/Ω to itself. First suppose that the uniformizing map ι has critical points in C/Ω. Since there
can be only finitely many, and since the lifted map f ] must send critical points to critical points, it
follows that there must be a periodic critical point. Thus replacing f and f ] by some iterate, we may
assume that there is a fixed critical point. In terms of suitable local coordinates around this point and
its image in P2, the map ι will have power series expansion of the form

t 7→
(
x(t), y(t)

)
= (tm + · · · , tn + · · · )

with m > n ≥ 2. Let λ be the multiplier of f ]. Then the equation ι(λ t) = f
(
ι(t)

)
implies that the

eigenvalues of the derivative f ′ at the critical value are λm and λn. Since |λ| > 1, it follows that this
critical value is a repelling fixed point for f ; which contradicts the hypothesis that C has a trapping
neighborhood.

Now suppose that we could find two branches through ι(t1) = ι(t2) = p which map to distinct
branches under all iterates of f . Since there are only finitely many singular points, these images must
eventually cycle periodically. Thus, after replacing f by an iterate, we could find two distinct branches
through some singular point q which both map to themselves. Since f ] has multiplier λ, it would follow
easily that the eigenvalues of f ′ at q have the form λ and λm, where m ≥ 1 is the intersection number
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between these two branches. Again this shows that q is a repelling point, contradicting the hypothesis
that C has a trapping neighborhood.

The Pulled Back Neighborhood. For any small ε > 0 we can “pull back” the ε-neighborhood
Nε = Nε(C) under the immersion ι to construct a formal neighborhood of N ]

ε ⊃ C/Ω. For each t ∈ C/Ω,
let Dε(t, ι) ⊂ P

2 be the open unit disk in the line normal to ι(C/Ω) at ι(t), and let

N ]
ε = N ]

ε (ι) ⊂ (C/Ω) × P
2

be the set of all pairs (t, p) ∈ C/Ω × P
2 with t ∈ C/Ω and p ∈ Dε(t, ι). Then N ]

ε is a real analytic

manifold, and the projection Π](t, p) = t is a real analytic fibration of N ]
ε over C/Ω. Furthermore, if

ε is sufficiently small, then the projection ι̃(t, p) = p will be a local diffeomorphism from N ]
ε onto the

open neighborhood Nε ⊂ P2. Using this local diffeomorphism ι̃, we can pull back the complex structure
and make N ]

ε into a complex manifold.

For the next lemma, we assume that f has been replaced by a suitable iterate f ◦n, satisfying the
conditions of Lemma 7.9.

LEMMA 7.10. Lifting the Trapping Neighborhood. If the singular curve C is a

trapped attractor under some rational map f of P2 which folds branches together as in Lemma

7.9, then f lifts to a holomorphic map f ] from a neighborhood of C/Ω in N ]
ε into N ]

ε , with

C/Ω as trapped attractor.

Proof. Given a pulled-back neighborhood N ]
ε = N ]

ε (ι) as above, by the uniform continuity of f
on the compact set N ε(C), we can choose δ < ε so that any curve of length < δ in Nε(C) maps to a

curve of length < ε in P2. We can then form the neighborhood N ]
δ(ι) ⊂ N ]

ε (ι) of C/Ω , with image
C ⊂ Nδ(C) ⊂ Nε(C), and with f(Nδ) ⊂ Nε. We may also assume that δ is small enough so that the
projection which sends each point of Nδ to the closest point of C is uniquely defined, except within
the ε-neighborhood of a branch point.

Now let T ⊂ Nδ be a trapping neighborhood for C and let T ] be the full preimage of T in N ]
ε .

Then a lifted map f ] : T ] → T ] can be constructed as follows. For each point (t, p) ∈ T ] ⊂ N ]
ε we can

drop a perpendicular of length < δ from p to some point q ∈ C. The image under f will then be a curve
of length < ε joining f(p) to f(q) ∈ C. Deforming this curve to a minimal geodesic from f(p) which
meets C orthogonally, say at q̂ = ι(t̂), it follows that (t̂, f(p)) ∈ T ], and we will set f ](t, p) = (t̂, f(p)).

This construction does not appear to be well defined in the neighborhood of a singular point, since
there may be perpendiculars of length < δ from p to points on two or more branches of C. However,
by hypothesis these branches all map to a single branch of C, so that the minimal geodesic from f(p)
to that branch of C is unique.

Finally, we must show that the intersection A] of the iterated forward images of T ] is equal to C/Ω.
Clearly the projection from T ] onto T maps A] onto C. Therefore A] is contained in the preimage
of C in T ], which consists of C, together with preimages of the ε-neighborhoods of the various branch
points. (If ι(t1) = · · · = ι(tk), then there are k− 1 extra preimage branches through each of the points
t1 , . . . , tk.) But f ] maps each of these extra branches back to C/Ω, so the attractor A] is precisely
C/Ω.

The proof of Theorem 7.4 now proceeds just as in Lemmas 7.5 through 7.8 above. However, to
carry out the argument in this new context, we must show that there are nearby curves which are not
conformally isomorphic to C/Ω. In fact, we will prove the following, which will complete the proof.
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LEMMA 7.11. Deforming Immersed Curves. Consider a Riemann surface of genus one

of the form C/Ω, and let FΩ : C/Ω → P2 be an immersion. Then for any small deformation

Ωt of the lattice Ω, we can construct a corresponding deformation FΩt
of the immersion FΩ.

Proof. Let P̂
2 be the projective plane blown up at the three coordinate points (1 : 0 : 0), (0 : 1 : 0),

and (0 : 0 : 1). The following two statements are easily verified.

1. Any holomorphic immersion of a Riemann surface into P
2 lifts uniquely to an immersion

into P̂2 , and any immersion into P̂2 projects to a map into P2 which is an immersion, except

possibly over the three coordinate points.

(The qualification is necessary since, for example, the non-immersion t 7→ (t3 : t2 : 1) from P
1 into P

2

lifts to an immersion into P̂
2.)

2. We can construct a smooth embedding of P̂
2 as a hypersurface in P

1×P
1×P

1 by sending

each (x : y : z) ∈ P̂2 to the triple (f, g, h) where

f = x/y, g = y/z, h = z/x,

with product fgh = 1.

(The blowup guarantees, for example, that x/y makes sense, even at the point (0 : 0 : 1). Interpreted
in terms of local coordinates for P

1, the equation fgh = 1 is well behaved, even when one or two of
these functions take the value ∞ . For example, near a point where h = ∞ but f and g are finite, we
use h−1 as local coordinate, so that the equation takes the form h−1 = fg.)

Thus to immerse a Riemann surface S into P
2 we need only find three holomorphic functions f, g, h

from S to P
1 which yield an immersion of S into P

1 × P
1 × P

1, and which have product equal to 1,
taking care that nothing goes wrong over the three coordinate points. (The maps f, g, h need not
have the same degree. For example the functions f(t) = g(t) = t, h(t) = 1/t2 from P1 to P1 yield the
smooth quadratic variety xz = y2.)

As noted above, FΩ lifts to an embedding t 7→
(
f(t), g(t), h(t)

)
of C/Ω into the subset

P̂
2 ⊂ P

1 × P
1 × P

1. Furthermore, each of the functions f and g can be expressed as a rational function
of the Weierstrass function ℘Ω(t) and its derivative ℘′

Ω(t). Choosing some explicit expressions for these
rational functions and setting h = 1/(fg), it follows that the map t 7→

(
f(t), g(t), h(t)

)
deforms

smoothly as we modify the lattice Ω. Evidently the requirement that this map project to an immersion
into P2 will remain satisfied for all sufficiently small deformations. This completes the proof of Lemma
7.11 and hence of Theorem 7.4.

8 Herman Rings in P
2.

In Example 5.4 we presented empirical evidence for the existence of a cycle of two attracting Herman
rings for a substantial collection of complex Desboves maps with real coefficients. This section will
explore what we can say more generally about Herman rings and Siegel disks in P2(C). (Compare
Definition 1.2.) Note first that it is easy to construct special examples.
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Example 8.1. Rings Contained in a Complex Line. Let (z0 : z1) 7−→
(
p(z0, z1) : q(z0, z1)

)

be any degree d rational map of P1(C) which possesses a Herman ring. (For the existence of such
rings, compare Remark 8.11, and see for example [Shishikura 1987].) Let r(z0, z1, z2) be any nonzero
homogeneous polynomial of degree d− 1. Then the map

f(z0 : z1 : z2) =
(
p(z0, z1) : q(z0, z1) : z2 r(z0, z1, z2)

)

of P2(C) clearly has a Herman ring H which lies in the invariant line z2 = 0. We can measure the
extent to which this ring is attracting or repelling by using ρ(z0 : z1 : z2) = |z2|/

√
|z0|2 + |z1|2 as a

measure of distance from the line z2 = 0. If the ratio

ρ(f(z0 : z1 : z2))

ρ(z0 : z1 : z2)
= |r|

√
|z0|2 + |z1|2
|p|2 + |q|2

is less than 1 everywhere on H then this ring will be locally uniformly attracting, while if it is greater
than 1 everywhere on H then it will be locally uniformly repelling. Thus we can always obtain
an attracting H simply by multiplying any given r(z0, z1, z2) by a constant which is close to zero.
Similarly, if r(z0 : z1 : 0) is bounded away from zero throughout H, then we can obtain a repelling H
by multiplying r(z0, z1, z2) by a large constant. In the first case, note that H will be contained in the
Fatou set, while in the second case it will be contained in the Julia set. By choosing r(z0, z1, z2) more
carefully, we can also find examples where part of the ring is attracting and part is repelling. (Compare
Lemmas 8.5 and 8.8.) The situation for attracting or repelling Siegel disks is completely analogous.

Example 8.2. The Ueda Construction. Here is a quite different procedure which yields a rich
variety of dynamic behaviors. (Compare [Ueda 1993], [Fornæss 1996, p. 13].) Recall that the n-fold
symmetric product of P

1 = P
1(C) with itself, that is the quotient (P1 × · · · × P

1)/Sn of the n-fold
product by the symmetric group Sn of permutations of the n coordinates, can be naturally identified
with P

n = P
n(C). (This is proved by assigning to each homogeneous polynomial in two complex

variables its collection of roots in P1.) Hence any rational map g of P1 gives rise to an everywhere
defined rational map (g×· · ·×g)/Sn of Pn. In particular, it gives rise to a map11 f = (g×g)/S2 of P2.
Now if U1 and U2 are disjoint invariant Fatou components in P

1, then the product U1 × U2 ⊂ P
1 × P

1

can be identified with its image, which is an invariant Fatou component in P2. As examples:
• If U1 = H is a Herman ring in P

1 and U2 = B is the basin of an attracting fixed point, then
H ×B is the basin of an attracting Herman ring in P2. Similarly, if S is a Siegel disk then S×B is the
basin of an attracting Siegel disk.

• Furthermore, if H is a Herman ring in P1 and p is an arbitrary fixed point for the map g of P1,
then H × {p} if a Herman ring for f . Since g has infinitely many repelling fixed points, it follows that

f has infinitely many repelling Herman rings. Similarly, if g has a Siegel disk, then f has infinitely
many repelling Siegel disks.

• If H and H ′ are disjoint Herman rings and S, S ′ are disjoint Siegel disks, then H ×H ′, H × S,
and S×S′ are three rotation domains in P2 with quite distinct topologies. (Compare the discussion of
recurrent Fatou components in [Fornæss and Sibony 1995].)

• We can also give an example of a singular Siegel disk in P2. (Compare [Bedford and Smillie 1991,
p. 677].) Let S and S′ be Siegel disks with rotation numbers pθ and qθ where p, q > 1 are relatively

11More explicitly, if g(x : y) =
`
p(x, y) : q(x, y)

´
then the map f = (g × g)/S2 can be described by the formula

f(x1x2 : x1y2 + y1x2 : y1y2) = (p1p2 : p1q2 + q1p2 : q1q2) , where pj = p(xj , yj) and qj = q(xj , yj).
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prime. In other words, suppose that we can choose parameters z and w for these disks so that z maps
to e2πipθz and w maps to e2πiqθw under g. Then the locus zq = wp in S×S′ is an invariant Siegel disk,
embedded in this Siegel rotation domain, with a cusp singularity at the origin.

Remark 8.3. The construction described above can even be used to construct a Herman ring (or
Siegel disk) in the real projective plane: Simply start with a rational map of P

1(C) with real coefficients
which has two complex conjugate Herman rings (or Siegel disks), carry out the construction as described
above, and then intersect with P2(R).

The Transverse Lyapunov Exponent of a Ring or Disk.

For any f -invariant Herman ring or Siegel disk the transverse Lyapunov exponent is defined much as in
the case of an f -invariant elliptic curve, and is decisive as a test for attraction or repulsion. However,
the transverse exponent for a ring or disk is no longer a constant, but is rather a real valued function,
constant on each invariant circle. Furthermore, it is piecewise linear and convex in terms of suitably
chosen coordinates. To fix our ideas, we will concentrate on the Herman ring case.

To begin the discussion, note that for any Herman ring H ⊂ P
2(C) (and more generally for any

annulus) there is a conformal embedding t : H → C/Z which maps H isomorphically onto a cylinder
of the form h0 < =(t) < h1 in C/Z. (This embedding is unique up to a translation or change of sign
t 7→ ±t+ constant.) We will call t a canonical parameter on H. The difference h1 − h0 > 0 is called the
modulus of H.

LEMMA 8.4. Holomorphic Tubular Neighborhoods. Let Γh ⊂ H ⊂ P
2 be the

invariant circle =(t) = h contained in a Herman ring in the complex projective plane. Then

we can parametrize some neighborhood N = N(Γh) in P
2 by holomorphic coordinates (t, u),

where u ranges over a neighborhood of zero in C and t ranges over a neighborhood of the

circle =(t) = h in C/Z. Furthermore these coordinates can be chosen so that t is the canonical

parameter on N ∩H, and so that u is identically zero on this intersection.

Proof. In the dual projective space consisting of all lines in P2, those lines which intersect Γh form
a real 3-dimensional subset. Hence we can choose a line which misses Γh. After rotating the coordinates
(x : y : z), we may assume that this is the line z = 0. In other words, setting X = x/z , Y = y/z,
we can introduce the affine coordinates (X : Y : 1) = (x : y : z) throughout some neighborhood of Γh.
Let X = X(t) , Y = Y (t) be the canonical parametrization of H throughout this neighborhood. Then
the space of all unit vectors in C2 which are multiples of the tangent vector

(
Ẋ(t) , Ẏ (t)

)
for some(

X(t) , Y (t)
)
∈ Γh has real dimension 2. Hence we can choose a fixed unit vector ~V ∈ C2 which is not

tangent to H at any point of Γh. The required coordinates (t, u) are now defined by the formula

(t , u) 7→
(
X(t) , Y (t)

)
+ u ~V

for all (t, u) ∈ (C/Z) × C with both |=(t) − h| and |u| sufficiently small.

The map f , expressed in terms of these tubular coordinates in a neighborhood of Γh, has the form
(t, u) 7→ (T, U), where (t, 0) maps to (t + α, 0) for some irrational rotation number α. Evidently we
can identify the transverse derivative along H0 with the partial derivative

∂U

∂u

(
t, 0) .
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The transverse Lyapunov exponent is then defined as the horizontal average

Lyap(t) =

∫ 1

0
log

∣∣∣∣
∂U

∂u
(t+ τ)

∣∣∣∣ dτ ,

where we integrate over the interval 0 ≤ τ ≤ 1. If there are no zeros of ∂U/∂u in the strip
h0 < =(t) < h1 , u = 0, then Lyap(t) is an average of harmonic functions, and hence is harmonic.
Since this harmonic function is constant on horizontal lines, it must be a linear function of the imag-
inary part =(t). (We will sharpen this statement in Lemma 8.8.) The dynamical implications of this
Lyapunov exponent can be described as follows.

LEMMA 8.5. Attraction or Repulsion. If Lyap(t) is negative along the invariant circle

Γh ⊂ H, then a neighborhood of Γh in the Herman ring H is uniformly attracting in the

transverse direction, and hence is contained in the Fatou set of f . On the other hand, if

Lyap(t) is positive, then Γh is contained in the Julia set.

Remark 8.6. In the intermediate case where Lyap(t) is identically zero near Γh, we do not have
enough information to decide. In fact, using Ueda’s construction (Example 8.2), we can find examples
illustrating both possibilities. We can choose f so that a neighborhood of H, with its dynamics, is
isomorphic to (Herman ring)×(Siegel disk) and hence belong to the Fatou set. On the other hand,
we can choose f so that H corresponds to (Herman ring)×(parabolic point), and hence belong to the
Julia set.

Proof of Lemma 8.5. Recall that the map f restricted to the ring H has the form t 7→ t+α where
the rotation number α is real and irrational. To simplify the notation, let us translate the canonical
parameter t so that it takes real values (modulo one) on our invariant circle (so that h = 0). Following
Hermann Weyl, for any continuous function g : R/Z → C, the successive averages

Ang(t) = (1/n)
∑

0≤j<n

g(t+ jα)

converge uniformly to the integral
∫

R/Z
g(t) dt . To prove this statement, note that it is easily verified

in the special case that g(t) is a trigonometric polynomial of the form
∑

|k|≤N ak e
2πikt. But any

continuous g can be uniformly approximated by such a trigonometric polynomial. (This follows for
example from the Stone-Weierstrass Theorem.) The conclusion follows.

First suppose that the transverse derivative ∂U
∂u (t, 0) has no zeros on R/Z, so that the function

t 7→ g(t) = log
∣∣∂U

∂u (t, 0)
∣∣ is finite valued near R/Z. If the average Lyap(0) of g on R/Z is strictly

positive (or strictly negative), then we can choose an integer n > 0 so that Ang(t) is strictly positive
(or negative) and bounded away from zero on R/Z, and hence throughout some neighborhood of R/Z
in C/Z. Now consider an orbit (t0, u0) 7→ (t1, u1) 7→ · · · 7→ (tn, un) near the given circle Γ0. Note that

lim
u0→0

un

u0
=

∂un

∂u0

(
t0, 0) =

∏

0≤j<n

∂uj+1

∂uj

(
t0 + jα, 0) = exp

(
nAng(t)

)
.

Taking the log absolute value of both sides, if Ang(t) < log(c) < 0 on R/Z, then |∂un/∂u0| < cn < 1
when u0 = 0, and it follows easily that |un| ≤ cn |u0| uniformly throughout a neighborhood of our
invariant circle. This proves that some neighborhood H0 in H is uniformly attracted to Γ0. Similarly,
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if Ang(t) > log(c) > 0, then a neighborhood is uniformly repelled, so that Γ0 is contained in the Julia
set.

Now suppose that the holomorphic function t 7→ ∂U
∂u (t, 0) has zeros along the real axis. If Lyap(0) < 0,

then we can replace g(t) by the truncated function gν(t) = max{g(t) , ν}, where ν is some negative
real constant. If ν is sufficiently negative, then the integral

∫ 1
0 gν(t) dt will still be negative. Hence

we can choose n so that Ang(t) ≤ Angν(t) < log(c) < 0, and it again follows that a neighborhood
H0 of Γ0 is uniformly attracting. In the case Lyap(0) > 0, we cannot assert that a neighborhood is
uniformly repelling when it contains zeros of ∂U/∂u. However, such zeros are necessarily isolated. It
is not hard to check that the function t 7→ Lyap(=(t)) is continuous, and hence is positive throughout
a neighborhood. Since the Julia set of f is closed, we can at least conclude that Γ0 is contained in the
Julia set.

Remark 8.7. Although a Herman ring may attract an open neighborhood, it is conjectured that
its closure H can never be a trapped attractor. If H can be extended to a larger Herman ring H ′,
then this statement is completely clear since nearby points of H ′ cannot be attracted to H. However
the case of a maximal Herman ring, with boundary ∂H necessarily contained in the Julia set, requires
further study. The situation for Siegel disks is completely analogous.

LEMMA 8.8. Piecewise Linearity. Let H ⊂ P2 be a Herman ring with canonical parameter

t ∈ C/Z, where h0 < =(t) < h1. Then the function Lyap : (h0 , h1) → R is convex and

piecewise linear, with a jump in derivative at h if and only if the transverse derivative ∂U/∂u
has a zero on the circle =(t) = h. In fact the change in derivative at h is equal to 2π times

the number of zeros of ∂U/∂u on this circle, counted with multiplicity.

In particular, if there are points in H where the Lyapunov exponent is strictly negative, then it
follows that they form a connected subring Hattr ⊂ H.

Proof of Lemma 8.8. We will adapt a classical argument due to Jensen. (See for example
[Milnor 2006b, Appendix A].) It will be convenient to use the abbreviated notation ϕ(t) = ∂U/∂u for
the transverse derivative evaluated at (t, 0), and ϕ′(t) for its derivative. If ϕ has no zeros on the circle
=(t) = h, then we can compute the derivative of the transverse Lyapunov exponent by differentiating
under the integral sign. Setting t = τ + ih, we have

∂

∂h
log |ϕ(t)| =

∂

∂h
<

(
logϕ(t)

)
= <

(d logϕ(t)

dt

∂t

∂h

)
= <

(ϕ′

ϕ
i
)

and therefore

Lyap′(h) =
d

dh

∫ 1

0
log |ϕ(τ + ih)| dτ = <

∫ 1

0
i
ϕ′

ϕ
dτ ,

where ϕ′ and ϕ are evaluated at t = τ + ih for 0 ≤ τ ≤ 1 with h constant. Briefly, we can write

Lyap′(h) = <
∫

[0,1]×{h}
i
dϕ

ϕ
.

Given two numbers h0 < h1 such that ϕ has no zeros at height h0 or h1, we can now compute the
difference Lyap′(h1) − Lyap′(h0) as follows. Translating the parameter t horizontally if necessary we
may assume also that ϕ has no zeros on the vertical line <(t) = 0. Let R be the rectangle consisting
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of all t ∈ C with 0 ≤ <(t) ≤ 1 and h0 ≤ =(t) ≤ h1. Integrating in the positive direction around the
boundary of R, since the integrals around the left and right sides cancel out, we obtain

Lyap′(h0) − Lyap′(h1) = <
∮

∂R
i
dϕ

ϕ
.

But the integral
∮
∂R dϕ/ϕ is equal to 2πiN(R), where N(R) is the number of zeros of ϕ in R, so this

equation reduces to Lyap′(h1) − Lyap′(h0) = 2πN(R). This proves Lemma 8.8.

Remark 8.9. Siegel Disks and Punctured Siegel Disks. Let Dr{0} be the open set consisting
of all z ∈ C with 0 < |z| < 1. By a punctured Siegel disk we mean a holomorphic embedding of Dr{0}
as an f -invariant subset of P

2, mapped to itself by an irrational rotation.12 The argument above shows
that the transverse Lyapunov exponent of such a punctured disk can be expressed as a convex piecewise
linear function of log(r), where r = |z|. Furthermore, since this transverse exponent is bounded from
above, it must have the form Lyap = a log(r) + b for small r, with a ≥ 0. In particular, the set of
points with Lyap < 0 (if there are any) must be a punctured subdisk, corresponding to the set of z
with 0 < |z| < constant.

In the case of a full Siegel disk with no puncture, we can supplement this discussion with the explicit
formula

d Lyap

d log(r)
= N(Dr) ≥ 0 ,

where N(Dr) is the number of zeros of the transverse derivative, counted with multiplicity, in the disk
of radius r. This is essentially just a statement of Jensen’s original computation. (See for example
[Milnor 2006b, p. 219].)

Herman Rings for Maps with Real Coefficients.

Most known examples of Herman rings have been specially constructed. The surprise in 5.4 was to find
an apparent example which appeared out of the blue, with no obvious reason to expect it. The set of
complex rational maps of specified degree with a Herman ring presumably has measure zero, so that a
randomly chosen example will never have a Herman ring. However, if we consider rational maps with
real coefficients then the situation is different, and the discussion in Example 5.4 suggests that the set
of real parameters which give rise to a complex Herman ring should have positive Lebesgue measure.

Let f be a rational map of P2 with real coefficients, and suppose that there exists an embedded
f -invariant circle Γ ⊂ P2(R) with irrational rotation number. If Γ is smooth of class C2, then according
to Denjoy’s Theorem the restriction f |Γ is topologically conjugate to a circle rotation. In particular,
there is a canonical f -invariant probability measure dµ with support equal to the entire circle. The
transverse Lyapunov exponent of Γ in P2(R) is then well defined. Just as in the proof of Lemma 8.5,
a positive Lyapunov exponent implies that Γ is uniformly repelling, and similarly, a negative exponent
implies that Γ is uniformly attracting and hence is a trapped attractor.

In the real analytic case we can complexify the circle Γ to obtain the following.

LEMMA 8.10. From Circle to Ring. Let f be a rational map of P2(R). If Γ is a

real analytic f -invariant circle with Diophantine rotation number, then the associated map

12One example of a punctured Siegel disk which cannot be extended to a full smoothly embedded disk is described in
Example 8.2 above. We don’t know whether more exotic examples exist.
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from P2(C) to itself possesses a Herman ring H ⊃ Γ. Furthermore, the transverse Lyapunov

exponent of Γ in P2(R) is identical with the transverse Lyapunov exponent of H along Γ.

If we exclude the special case where the transverse exponent is exactly zero, then it follows that
Γ is repelling (or attracting) in the real projective plane if and only if a neighborhood of Γ in H is
repelling (or attracting) in the complex projective plane.

Remark 8.11. The One-Dimensional Case. It is interesting to compare the situation in one
variable. For any odd number d ≥ 3, the set of degree d rational maps which carry the real projective
line P1(R) diffeomorphically onto itself is open, and all possible rotation numbers are realized. If such a
map has Diophantine rotation number, then a similar argument shows that the corresponding rational
map of P

1(C) contains a Herman ring.

Proof of Lemma 8.10. By a theorem of Herman, as sharpened by Yoccoz, (see [Yoccoz 2002]),
any orientation preserving real analytic diffeomorphism of a circle with Diophantine rotation number
α is real analytically conjugate to the rigid rotation t 7→ t + α (mod Z) of the standard circle R/Z.
That is, there is a real analytic diffeomorphism h : R/Z → Γ ⊂ P2(R) so that f(h(t)) = h(t+α). Since
h is real analytic, it extends to a complex analytic diffeomorphism from a neighborhood of R/Z in the
cylinder C/Z into the complex projective plane. The image of this extended map on some neighborhood
{t mod Z ; |=(t)| < ε} is the required Herman ring H ⊂ P2(C). Evidently the translation t 7→ t+ α on
this neighborhood is conjugate to the rational map f on H. Further details are straightforward, since
any norm on the normal bundle of H in P

2(C) will restrict to a norm on the normal bundle of Γ in
P2(R).

Now consider a C∞-smoothly embedded circle Γ0 in a real 2-dimensional manifoldM . LetM
f0−→M

be a C∞-smooth map which restricts to an irrational rotation on Γ0, and which has negative transverse
exponent on Γ0. As noted above, an argument similar to the proof of Lemma 8.5 shows that Γ0 is a
trapped attractor. Let N ⊂M be a trapping neighborhood, with f0(N) ⊂ interior(N).

THEOREM 8.12. Persistence of Invariant Circles. In this situation, for any C∞-map

fτ which is close enough to f0 in the C1-topology, the intersection

Γτ =
⋂

n

f ◦n
τ (N)

of the iterated forward images of N under fτ will be a topological circle; and fτ will map this

circle homeomorphically onto itself with a rotation number ρτ which varies continuously with

τ . Furthermore, for any finite k, if fτ is C1-sufficiently close to f0, then Γτ will be Ck-smooth.

Here we can expect the continuous function τ 7→ ρτ to have an interval of constancy whenever ρτ

takes a rational value. In fact, a generic map fτ with ρτ = p/q will have an attracting period q orbit
contained in Γτ . In this case, Γτ cannot contain any dense orbit. Evidently such an attracting orbit
will be stable under perturbation.

Proof of Theorem 8.12. If a neighborhood of Γ0 is orientable, then we can choose local coordi-
nates (t, u) throughout some neighborhood of Γ0, with t ∈ R/Z and with |u| < ε, so that Γ0 is given
by the equation u = 0, and so that the map f0, in these coordinates, has the form

(t, u) 7→ (T, U) , where (t, 0) 7→ (t+ ρ0, 0) ,
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and where the rotation number ρ0 is an irrational constant. Thus T = t + ρ0 and U = 0 when
u = 0. (In the non-orientable case, we can first pass to the 2-fold orientable covering of a neighborhood
and then choose such coordinates.) Evidently ∂T/∂t = 1 and ∂U/∂t = 0 along the circle u = 0.
Furthermore, since the transverse exponent is negative, after replacing f0 by some high iterate we may
assume that |∂U/∂u| < c when u = 0 , for some constant c < 1.

After a carefully chosen change of coordinate, replacing (t, u) by (t̂, û), we will show that the
corresponding map (t̂, û) 7→ (T̂ , Û) satisfies the additional condition that ∂T̂ /∂û = 0 when û = 0 .
Let

t̂ = t+ ψ(t)u , û = u , and correspondingly T̂ = T + ψ(T )U , Û = U ,

where the auxiliary function ψ will be chosen below. Along the line u = U = 0, we then have

dT̂ = (∂T̂ /∂t̂ )dt̂ + (∂T̂ /∂û )dû = (∂T̂ /∂t̂)
(
dt+ ψ(t)du

)
+ (∂T̂ /∂û)du ,

but also
dT̂ = dT + ψ(T )dU = dt+ (∂T/∂u)du + ψ(T )(∂U/∂u)du .

Combining these two equations with the required identity ∂T̂ /∂û = 0, we obtain

ψ(t) =
∂T

∂u
(t, 0) + ψ(t+ ρ0)

∂U

∂u
(t, 0) .

This difference equation can be solved by setting

ψ(t) = s0 + r0s1 + r0r1s2 + · · · where sn =
∂T

∂u
(t+ nρ0, 0) and rn =

∂U

∂u
(t+ nρ0, 0) .

Since this series evidently converges uniformly, we obtain the required change of coordinates. Hence-
forth, we will leave off the hats and simply assume that we have chosen coordinates so that (t, u) 7→ (T,U)
with

∂T/∂t = 1 , ∂U/∂t = 0 ,
∂T/∂u = 0 , |∂U/∂u| < c

(26)

along the circle u = U = 0.
Next, given any 0 < η < 1, we can choose a trapping neighborhood N = {(t, u) ; |u| ≤ b0} for Γ0

which is small enough so that the inequalities

|∂tT − 1| < η, |∂uT | < η,
|∂tU | < η, |∂uU | < c,

(27)

are valid throughout this neighborhood (using an abbreviated notation for partial derivatives). We can
then choose fτ close enough to f0, so that fτ (N) ⊂ interior(N), so that these inequalities (27) remain
true for the map fτ (t, u) = (T,U).

Now consider a curve t 7→ u(t) with slope v(t) = du/dt. Setting fτ

(
t, u(t)

)
= (T,U), we have

dT
(
t, u(t)

)

dt
=

∂T

∂t
+
du

dt

∂T

∂u
or briefly DtT =

(
∂t + v ∂u)T ,

and similarly DtU =
(
∂t + v ∂u)U . Given some upper bound b1 for |v| = |du/dt|, we can estimate that

DtT > 1 − η − b1η and |DtU | < η + b1c ,
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and hence ∣∣∣∣
dU

dT

∣∣∣∣ =
|DtU |
DtT

<
η + b1c

1 − η − b1η
.

If η is sufficiently small, then this upper bound will be strictly less than b1. More precisely, if

0 < η <
b1(1 − c)

1 + b1 + b21
,

then a brief computation shows that DtT > 0 and that (η+ b1c)/(1−η− b1η) < b1. It will then follow
that the image curve is the graph of a well defined function U = U(T ), and furthermore that the slope
of this image curve is bounded by the same constant,

|dU/dT | < b1 .

It follows inductively that each iterated forward image of the initial curve will again be a well defined
curve with |slope| < b1.

As trapping neighborhood N we can choose a union of horizontal circles u = û with −b0 ≤ û ≤ b0.
Then each iterated image f ◦n

τ (N) ⊂ N will be a corresponding union of a continuum of curves of the
form un = un(t) with |dun/dt| ≤ b1. If u−n (t) is the infimum of this collection of curves and u+

n (t) is
the supremum, then it follows easily that the n-th forward image of N is given by

f ◦n
τ (N) = {(t, u) ; u−n (t) ≤ u ≤ u+

n (t)}.

Here the upper and lower boundary curves both satisfy a Lipschitz condition

|u±n (t1) − u±n (t0)| ≤ b1|t1 − t0|.

On the other hand, it follows from (27) that the Jacobian determinant of fτ within N is bounded by

|Jacobian| < (1 + η)c+ η2 ,

and we may assume that this upper bound is strictly less than one. Hence the areas of these successive
images shrink to zero. Thus

∫ 1
0

(
u+

n (t) − u−n (t)
)
dt tends to zero as n→ ∞. It follows easily that the

upper and lower bounding curves tend to a common Lipschitz limit. This proves that the attracting set

Γτ =
⋂

n≥0

f ◦n
τ (N)

is itself the graph of a function t 7→ limn→∞ u±n (t) which is continuous (and in fact Lipschitz with

Lipschitz constant b1).
Note that the rotation number ρτ of such a continuously varying family of monotone circle maps

depends continuously on the parameter τ . (See [de Melo and van Strien 1993, p. 33].)
To prove that this attracting curve is C1 smooth, we must estimate second derivatives. It will be

convenient to set

Dt,t = ∂ 2
t + 2v∂t∂u + v2∂ 2

u + (dv/dt)∂u , so that
d2U

dt2
= Dt,tU and

d2T

dt2
= Dt,tT .
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Since dU/dT = DtU/DtT , it follows that

d2U

dT 2
=

d

dT

DtU

DtT
=

Dt(DtU/DtT )

DtT
=

(Dt,tU)(DtT ) − (Dt,tT )(DtU)

(DtT )3
.

Separating out the dv/dt = d2u/dt2 terms, we can write this as

d2U

dT 2
= A2 + B2

d2u

dt2
, (28)

where A2 is uniformly bounded and where

B2 =
(∂uU)(DtT ) − (∂uT )(DtU)

(DtT )3
,

so that

|B2| <
c (1 − η − b1η) + η(η + b1c)

(1 − η − b1η)3
.

Evidently, if η is small enough, then |B2| < constant < 1. Now choose a constant b2 > |A2|/(1−|B2|).
Then if |d2u/dt2| < b2 , it follows that

|d2U/dT 2| < |A2| + |B2|b2 < b2 .

Thus, with these choices, the successive forward images of Γ0 will be curves un = un(t) which converge

uniformly to a limit, with both |dun/dt| and |d2un/dt
2| uniformly bounded.

Now we can continue inductively. By successively differentiating the formula (28) we find formulas
of the form

dkU/dT k = Ak + Bk d
ku/dtk ,

where Ak depends not only on the iterated partial derivatives of T (t, u) and U(t, u) but also on the
derivatives d`u/dt` with ` < k, and where

Bk+1 = Bk/DtT < Bk/(1 − η − b1η) .

Thus, choosing η small enough so that Bk < constant < 1, we can find a suitable upper bound bk
for |dku/dtk| which is preserved when we replace a curve Γ by fτ (Γ). Thus, given any finite k, we
can choose η small enough so that the iterated forward images of a curve u = u(t) which satisfies the
inequalities

|d`u/dt`| ≤ b` for all ` ≤ k

will be a curve which satisfies these same inequalities.
To complete the proof of Theorem 8.12, we need the following.

LEMMA 8.13. A Derivative Inequality. If a C2-smooth function x = x(t) on the real

line satisfies uniform inequalities |x(t)| < α and |d2x/dt2| < β, then it follows that

|dx/dt| <
√

2αβ .
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Proof. Suppose, for example, that the first derivative x′ = dx/dt satisfied x′(0) ≥ √
2ρ0β with

x(0) ≥ 0. Using the lower bound x′′(t) > −β and integrating twice, we see that

x′(t) >
√

2αβ − βt and x(t) >
√

2αβ t − βt2/2

for t > 0. In particular, substituting t0 =
√

2α/β, it would follow that x(t0) > α, thus contradicting
the hypothesis. Other cases can be handled similarly.

We can now complete the proof of Theorem 8.12. Again let un = un(t) be the n-th forward
image of Γ0 under fτ . As m and n tend to infinity, the difference un(t) − um(t) tends to zero, while
the difference u′′n(t) − u′′m(t) remains uniformly bounded. Thus it follows from Lemma 8.13 that the
difference u′n(t) − u′m(t) converges uniformly to zero. Similarly, since differences of higher derivatives
remain uniformly bounded, it follows inductively that differences of higher derivatives converge to zero.
Thus, for any specified k <∞, it follows that the limit curve Γτ is Ck-smooth whenever τ is sufficiently
close to zero. This completes the proof.

Remark 8.14. Note that the argument above does not produce a C∞ curve, since we need to
impose tighter and tighter restrictions on fτ in order to get successive higher derivatives. The argument
certainly does not produce a real analytic curve, which is what we would need in order to show that
Γτ is contained in a Herman ring. We have no idea how to prove real analyticity, even assuming that
the rotation number ρτ is Diophantine.13

9 Open Problems.

The results of this note leave a number of conjectures and open questions. Here is a brief list.

Conjecture 9.1. For any f -invariant elliptic curve C ⊂ P
2(C), the basin of attraction, consisting

of all points whose orbits converge to C, is contained in the Julia set of f . (Intuitive proof: Otherwise
the basin would have to contain an open set U such that every sequence of iterates of f on U contains
a subsequence converging to a constant c ∈ C. This looks very unlikely, given the fact that f is highly
expanding in directions tangent to C.)

The following two conjectures are closely related. Compare the discussion in Remark 4.3.

Conjecture 9.2. Such an attracting basin cannot contain any nonvacuous open set. In other
words, the set of all points not attracted to C is always everywhere dense.

Conjecture 9.3. Every invariant complex elliptic curve contains a repelling periodic point. (In all
examples known to us there is a repelling fixed point.)

Conjecture 9.4. In the space of complex Desboves maps with real coefficients, there is a subset
of positive measure consisting of maps which have a cycle of attracting Herman rings. (Compare §8
and Example 5.4.)

13In order to illustrate the difficulty of understanding simple closed curves, it is interesting to compare the boundaries
of Siegel disks for rational maps of P

1. These are simple closed curves in all known cases. They can never be real analytic,
but in the non-Diophantine case they can be C∞-smooth. (Compare [Avila et al. 2004].) In the Diophantine case, such
a boundary necessarily contains a critical point, and hence cannot be smooth. (See [Ghys 1984].)
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There are also many questions where we have no idea what to guess.

• To what extent are maps with an attracting periodic orbit common in the space of all degree d
maps preserving a given elliptic curve? For example, do they form a dense open set?

• Can an invariant elliptic curve be a global attractor, with an attracting basin of full measure?
We have constructed a number of examples where this seems to be true empirically; but how can
one exclude the possibility of other attractors with basins of very small measure?

• Can a smooth real elliptic curve be a trapped attractor?

• What can one say about the dynamics when the elliptic curve has positive transverse Lyapunov
exponent? Could such a map have an absolutely continuous invariant measure? Is it true that an
elliptic curve can never be a measure-theoretic attractor when its transverse exponent is positive?
(Compare Remarks 1.4 and 6.8.)

• What other kinds of attractor can occur for a rational map with invariant elliptic curve? Can
there be fractal attractors? Can there be a set of dense orbits of positive measure, or even of full
measure? Can the Julia set have positive measure?
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