$\rm MTH~243$

Quiz IV (Take home)

Name:

Show all your work.!

(1) Find the equation of the tangent plane at the given point $z=e^y+x+x^2 \quad {\rm at \ the \ point} \quad (1,0,9)$

(2) An unevenly heated plate has temperature T(x, y) in centigrades at the point (x, y). If T(2, 1) = 135 and $T_x(2, 1) = 16$, $T_y(2, 1) = -15$ estimate the temperature at the point (2.04, 0.97)

(3) Find the gradient at the given point

$$f(x,y) = \sqrt{\tan x + y} \qquad \text{at } (0,1)$$

(4) Find the directional derivative $f_{\vec{u}}(1,2)$ for the function $f(x,y) = \sin(2x-y)$ with $\vec{u} = (3\vec{i} - 4\vec{j})/5$

- (5) Let f(x, y) = x² + ln y
 (a) Find the average rate of change as you go from (3, 1) to (1, 2)
 - (b) Find the instantaneous rate of change of f as you leave the point (3, 1)heading toward (1, 2).

(6) Find the directional derivative using $f(x, y, z) = xy + z^2$. At the point (2, 3, 4) in the direction of a vector making an angle of $3\pi/4$ with $\nabla f(2, 3, 4)$.

- (7) The surface S is represented by the equation F = 0 where $F(x, y, z) = x^2 (y/z^2)$.
 - (a) Find the unit vectors $\vec{u_1}$ and $\vec{u_2}$ pointing in the direction of maximum increase of F at the points (0, 0, 1) and (1, 1, 1) respectively.
 - (b) Find the tangent plane to S at the points (0,0,1) and (1,1,1)
 - (c) Find all points on S where a normal vector is parallel to the xy-plane.

(8) Find $\partial z/\partial u$ and $\partial z/\partial v$. The variables are restricted to domains where the functions are defined.

(a) $z = xe^y$, $x = \ln u$, y = v(b) $z = xe^{-y} + ye^{-x}$, $x = u\sin(v)$, $y = v\cos(u)$

- (9) Find the critical points and classify them as local maxima, local minima, saddle points or none of these
 - saddle points or none of these (a) $f(x,y) = x^3 - 3x + y^3 - 3y$ (b) $f(x,y) = e^{2x^2 + y^2}$

(10) Use Lagrange multipliers to find the maximum and minimum values of f subject to the given constraint if such values exist.

$$f(x,y) = x^3 + y, \qquad x + y \ge 1$$