Show all your work.!

(1) Determine whether \(f(z) \) is analytic or not. If \(f \) is analytic, find the domain of analyticity of \(f(z) \) and compute \(f'(z) \).

(a) \(f(z) = e^z = \exp(z) \)
(b) \(f(z) = 1/z \)
(c) \(f(z) = x^2 + iy^2 \)
(d) \(f(z) = \begin{cases} \frac{\pi}{z} & \text{when } z \neq 0 \\ 0 & \text{when } z = 0 \end{cases} \)
(2) If

\[
\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)
\]

\[
\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)
\]

Show that a harmonic function \(u \), satisfies the formal differential equation

\[
\frac{\partial^2 u}{\partial z \partial \bar{z}} = 0
\]
(3) Find an analytic function f, whose real part is given by

$$u(x, y) = (e^x + e^{-x}) \cos y$$
(4) Find all the roots of the equation
\[
\sin z = 2
\]
(5) Show that
(a) \((-1 + \sqrt{3}i)^{3/2} = \pm 2\sqrt{2}\)
(b) \((1 + i)^i = \exp(-\frac{\pi}{4} + 2n\pi) \exp(\frac{i}{2 \ln 2}), \quad n \in \mathbb{Z} \).

Note \(e^x = \exp(x)\).
(6) Show that

(a) the set of values of $\log(i^{1/2})$ is $(n + \frac{1}{4})\pi i$ ($n = 0, \pm 1, \pm 2, \ldots$) and that the same is true of $(1/2)\log i$;

(b) the set of values of $\log(i^2)$ is not the same as the set of values of $2\log i$.
Extra Credit for Exam.
(7) Show that
(a) the function \(\text{Log}(z - i)\) is analytic everywhere except on the half line \(y = 1, \quad (x \leq 0)\);
(b) the function
\[
\frac{\text{Log}(z + 4)}{z^2 + i}
\]
is analytic everywhere except at the points \(\pm(1 - i)/\sqrt{2}\) and on the portion \(x \leq -4\) of the real axis.

(Note. Here \(\text{Log}(z)\) denotes the principal value of \(\log z\).)