?)e\oq owt C {'6-«" celubousto FPv’u(L‘(‘ePTeﬁ“E pra\b\ems .
\

See 16.%

UWe evaluate the inside integral first:

/ (z*y)dy = (%—)
/0 1 /0 ’ (z?y) dydz = /0 1 (2¢*) dz = (%)

@The line connecting (1, 0) and (4,1) is

Therefore, we have

y:%(m—l)
4 2

// fdydz
1 J(z-1)/3

N\
@The region of integration ranges fromz = 0 to z = 3 and from y = 0 to y = 2, as shown in Figure 16.11. To evaluate
the integral, we evaluate the inside integral first:

So the integral is

=2z

2z 3 Yy 3
2
/ (x2+y2)dy=(z2y+y—) = otom)+ L e 4 B 2 Mot
0 3 y=0 3 3
Therefore, we have s 2 s
x 3
/ / (x2+y2)dydx=/ (B-aﬁ') dzr = (14 4) =945.
o Jo o \3 12
Y
6

Figure 16.11

e function sin () has no elementary antiderivative, so we try. integrating with respect to y first. The region of integra-
tion is shown in Figure 16.17. Changing the order of integration, we get

1l 1 pz
//sin(mz)dzdyzf / sin (z°) dy dz

0 Y 0 o
1 T
=/ sin (z%) - y| d

0

z
0
1
=/ sin (z%) - z dz
0
2 1
_ _cos(z?)
2 |
cosl 1

1
=-——+3= 5(1—cosl) =0.23.

Figure 16.17
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ély\We calculate the partial derivatives and set them to zero.

0 range) _ 10t — 6k + 400 = 0
ot
0 (range) _
h = 6t — 6h + 300 = 0.
10t + 6h = 400
6t + 6h = 300
solving we obtain
4t = 100
50
t=25

Solving for h, we obtain 6h = 150, yielding h = 25. Since the range is quadratic in h and ¢, the second derivative test
tells us this is a local and global maximum. So the optimal conditions are h = 25% humidity and ¢ = 25°C.

( 2 (@) fz(P) < 0because f decreases as you go to the right.
(b) fy(P) = 0 because f does not change as you go up.
(©) fzz(P) < 0 because f, decreases as you go to the right (. changes from a small negative number to a large negative
number).
(d) fyy(P) = 0 because £, does not change as you go up.
(€) foy(P) = 0 because f. does not change as you go up.

( ’ ’29.\: We have f(1,0) = 1 and the relevant derivatives are:

o= 2@t s LOL,0)=5
fr=Erm) ™ o fL,0 =1
fae =—%(ac+2y)‘3/2 0 faa(1,0) = —

[N R S

fov = =5+ ) 0 fuy(1,0)=—
fou = —(@+29)7%% so fu,(1,0)=-1.
Thus the linear approximation, L(z,y) to f(z,y) at (1,0), is given by:
f(z,y) = L(z,y) = f(1,0) + f(1,0)(z — 1) + f,(1,0)(y — 0)
:1+%(z—1)+y.
The quadratic approximation, Q(z,y) to f(x, y) near (1, 0), is given by:
flz,y) = Q(z,y) = £(1,0) + fo(1,0)(z — 1) + f,,(1,0)(y — 0) + %fm(l,O)(w - 1)
F Far(1L0)@ = Dy =0) + 5 fuu (1,0)(y — 0)?
=145 +y- -;—(::—1)2—%(1:—1)3;—%1;2.
The values of the approximations are

L(0.9,0.2) =1—0.05+0.2 =115
Q(0.9,0.2) = 1 — 0.05 + 0.2 — 0.00125 + 0.01 — 0.02 = 1.13875

and the exact value is
£(0.9,0.2) = V1.3 =~ 1.14018.

Observe that the quadratic approximation is closer to the exact value.
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18.\ The voltage at any time ¢ is given by V = IR where R is the resistance for the whole circuit. (In this case R =
Ri1R2/(R1 + R»).) So the rate at which the voltage is changing is

dv _dI  dR

o " altt
dI OR dRi  OR dRz)
= EER”(ﬁTzT* oR: i

_dl B_dR R iR
“ER+I<(Rl+R2)2 @t TRt R): @t
15 25 9 )
=2 220.5) + —(—0.1
)+2(64(05)+64( 0.1)

=0.01(8

= 0.3812.

So the voltage is increasing by 0.3812 volts/sec.

4,9
@irst, we check that (—1)% — (1)? 4+ 2% = 4. Then let f(z,y,2) = 22 — y® + 22 so that the given surface is the level
surface f(z,y,z) = 4. Since f, = 2z, fy = —2y, and f. = 2z, we have grad f(—1,1,2) = =27 — 2] + 4k . Since
gradients are perpendicular to level surfaces, a vector normal to the surface at (—1,1,2) is# = —2i — 2 + 4K . Thus
an equation for the tangent plane is
—2(z+1)-2(y-1)+4(z—2)=0.
/?‘

g\24.}(a) We have VG = (2z — 5y)i + (—bz + 292)] + (y®)k, so VG(1,2,3) = —87 + 7] + 4k . The rate of change is
N given by the directional derivative in the direction ¥ :

—

¥ .
m=(—8l + 77 +4k)-

_-16+7-16 —25
V2l V21

(b) The direction of maximum rate of change is VG(1, 2, 3) = —81 + 7] +4k. .
(¢) The maximum rate of change is [|[VG(1, 2, 3)|| = 1/(=8)2 + 72 + 42 = /129 ~ 11.36.

(27 +7 —4k)

Rate of change in density = VG -
V21

~ —5.455.

M4~
. 56. ) Assume that the z-axis points east and the y-axis points north. We are given that ||V f|| = 5 and that V £ is in the direction
t +7.Since [|{ +j || =+2and Vf is amultiple of 7 + j, we have

Vi= 2o+
The rate of change toward the north is the directional derivative in direction f, which is
Vi = —}56#)3 - %
@Directional derivative = V f - & , where & = unit vector. If we move from (4, 5) to (5, 6), we move in the direction i+7
S0OU = %i" + :}—.2.;.80,
Vi-d = fo (%) + 4 (-\}—5) —2.
Similarly, if we move from (4, 5) to (6, 6), the direction is 2 + j so @ = —2—5; + —1—5; So

orees ()0 ()

Solving the system of equations for f; and f,

fat fy =2V2
2fs + fy = 3V5
gives
fz =3V5—2V2
fy = 4V2 - 3V5.
Thus at (4, 5),

VF=(3vV5—2V2)i + (4V2 - 3V5)] .
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\14. We have
0
f2(3,1) = 55 = 2zy|(3,1) = 6,
(3,1)
and
0
fy(3,1) = 5—5 =251 =9.
(3,1)

Also f(3,1) = 9. So the local linearization is,
2=9+6(z—3)+9(y—1).

L . _ © _ 342
@Smc@ fo(z,y) = T and fy(z,y) = 2\/—:—%—?’3,
1 1 - 322
fz(1,2) = = = 3 and f,(1,2) Piewe 2.
Thus the differential at the point (1, 2) is

df = df(1,2) = fo(1,2)dz + £, (1, 2)dy = %dm +2dy.
Using the differential at the point (1, 2), we can estimate f(1.04, 1.98). Since
Af = fo(1,2)Dz + f,(1,2) Ay
where A f = £(1.04,1.98) — f(1,2) and Az = 1.04 — 1 and Ay = 1.98 — 2, we have
£(1.04,1.98) & £(1,2) + f2(1,2)(1.04 — 1) + £, (1,2)(1.98 — 2)
=12 +23 + 9;)—4 —2(0.02) ~ 2.973.

\
@ Local linearization gives us the approximation

T(z,y) = T(2,1) + To(2,1)(z — 2) + Ty (2, )(y — 1)
T(z,y) ~ 135 + 16(z — 2) — 15(y — 1).
Thus,
T(2.04,0.97) % 135 + 16(2.04 — 2) — 15(0.97 — 1) = 136.09°C.



