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Abstract

In the on-line Ramsey game on a family H of graphs, “Builder” presents edges of
a graph one-by-one, and “Painter” colors each edge as it is presented; we require that
Builder keep the presented graph in H. Builder wins the game (G,H) if Builder can
ensure that a monochromatic G arises. The s-color on-line degree Ramsey number of
G, denoted R̊Δ(G; s), is the least k such that Builder wins (G,H) when H is the family
of graphs having maximum degree at most k and Painter has s colors available. More
generally, R̊Δ(G1, . . . , Gs) is the minimum k such that Builder can force a copy of Gi

in color i for some i when restricted to graphs with maximum degree at most k.
In this paper, we prove that R̊Δ(T ; s) ≤ s(Δ(T ) − 1) + 1 for every tree T ; this is

sharp, with equality whenever T has adjacent vertices of maximum degree. We also
give lower and upper bounds on R̊Δ(G1, . . . , Gs) when each Gi is a double-star. When
each Gi is a star, we determine R̊Δ(G1, . . . , Gs) exactly.

1 Introduction

When every 2-edge-coloring of a host graph H contains a monochromatic copy of a target

graph G, we write H → G. More generally, when every s-edge-coloring of H contains a

monochromatic G, we write H
s→ G. The central problem of graph Ramsey theory is to find

the least n such that Kn → G, which can be restated as min{|V (H)| : H → G}. The value

is called the Ramsey number of G, denoted R(G) (or R(G; s) in the s-color setting).

This phrasing of the Ramsey number generalizes: given a graph parameter ρ, let Rρ(G) =

min{ρ(H) : H → G}. When ρ is the maximum degree, the Ramsey parameter is the degree

Ramsey number, RΔ(G). Burr, Erdős, and Lovász [2] introduced this notion and determined

RΔ(K1,k) and RΔ(Kn); further results appear in [7, 9].
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An on-line variant of the degree Ramsey number can be phrased as a game played by

two players, “Builder” and “Painter”, on an infinite set of vertices. In each round, Builder

introduces an edge and Painter colors it from a fixed set of s colors. Builder aims to force

a monochromatic copy of a target graph G. By Ramsey’s Theorem, Builder can win by

presenting a large complete graph. Thus we restrict Builder by requiring that the presented

graph remains in a family H; the game is then played on H. If Builder can still force a

monochromatic G, then we say Builder wins. More generally, Builder wins (G1, . . . , Gs;H)

if Builder can force a copy of Gi in color i for some i when playing on H with Painter having

s colors available. Introduced by Beck [1], this model was studied by Grytczuk, Ha�luszczak,

and Kierstead [5] for several natural choices of H in the case where s = 2 and G1 = G2.

Later results appear in [4, 6, 8, 10].

We focus on the case where H is Sk, the set of graphs with maximum degree at most k.

We define R̊Δ(G1, . . . , Gs) to be the least k such that Builder wins (G1, . . . , Gs;Sk). When

G1 = · · · = Gs = G, we have the diagonal case and abbreviate the notation to R̊Δ(G; s),

called the s-color on-line degree Ramsey number of G. The parameter is well-defined, since

it is bounded by the ordinary s-color Ramsey number minus 1.

For s = 2, Butterfield et al. [3] determined the exact 2-color on-line degree Ramsey

numbers for paths, stars, and double-stars (trees with diameter 3), and they proved that

R̊Δ(T ; 2) ≤ 2Δ(T ) − 1 for every tree T . In this paper, we extend several of those results

to the s-color, non-diagonal setting. Proposition 2.3 states that R̊Δ(Pn1, . . . , Pns) = s + 1

when each ni is at least 4; this uses a recursive lower bound for R̊Δ(G1, . . . , Gs) in terms

of R̊Δ(G1, . . . , Gs−1). Theorem 2.5 gives somewhat technical lower and upper bounds for

R̊Δ(G1, . . . , Gs) when each Gs is a double-star; these bounds coincide when the central

vertices of each Gi have identical degrees (Corollary 2.7). A refined argument determines

the exact value when each Gi is a star (Theorem 2.8). Finally, Theorem 2.10 states that

R̊Δ(T1, . . . , Ts) ≤
∑s

i=1(Δ(Ti)−1) + 1 when each Ti is a tree; this bound holds with equality

when each Ti has adjacent vertices of maximum degree.

2 Results

In the course of a particular game, we often focus attention on special subgraphs of the

presented graph, usually monochromatic. In such situations, we must distinguish between

the degree of a vertex within the subgraph and its degree within the full presented graph.

We use “degree” to mean “degree within the given subgraph” and “global degree” to mean

“degree within the full presented graph”.

In giving strategies for Builder to prove upper bounds, we may assume that Painter

behaves “consistently”. A consistent Painter chooses a color for edge uv based solely on the

edge-colored components presently containing u and v. It was shown in [3] that for any graph
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G and any monotone additive graph family H, Builder wins (G;H) if and only if Builder

wins against every consistent Painter. Thus consistent Painters are no weaker than general

Painters, but this formal restriction on the Painter simplifies what needs to be said for a

Builder strategy. If Builder repeats the same sequence of moves on disjoint sets of vertices,

then a consistent Painter produces the same coloring every time. This observation yields the

lemma below, which we apply throughout the paper without explicit citation.

Lemma 2.1. If Builder can force an edge-colored graph G against a consistent Painter, then

Builder can force arbitrarily many copies of G.

Our first result is a general lower bound on R̊Δ(G; s). It uses a Painter strategy that

generalizes the “greedy Sk-Painter” from [3], who colors an edge red when the resulting red

subgraph would belong to Sk and blue otherwise.

Proposition 2.2. For graphs G1, . . . , Gs,

R̊Δ(G1, . . . , Gs) ≥ (R̊Δ(G1, . . . , Gs−1) − 1) + max
uv∈E(Gs)

min{dGs(u), dGs(v)}.

Proof. Let d = R̊Δ(G1, . . . , Gs−1) − 1 and r = maxuv∈E(Gs) min{dGs(u), dGs(v)}; we provide

a strategy for Painter to win on Sd+r−1. Painter colors edges using blue and s − 1 shades

of red. Painter behaves similarly to a greedy Sd-Painter. However, whenever Painter colors

an edge red, he chooses the particular shade of red according to some winning strategy for

(G1, . . . , Gs−1;Sd). In this way Painter avoids producing a copy of any Gi in the correspond-

ing shade of red; it suffices to show that also Painter produces no blue Gs.

Suppose that Painter has produced a blue copy H of Gs. Choose an edge uv in H

maximizing min{dH(u), dH(v)}. Since Painter colored uv blue, one of its endpoints, say u,

lies on d red edges in the presented graph. Since u also lies on at least dH(u) blue edges, it

has global degree at least d + r, a contradiction.

As an application of Proposition 2.2, we determine R̊Δ(Pn1 , . . . , Pns); the proof of this

result introduces techniques used in the proof of Theorem 2.10.

Proposition 2.3. R̊Δ(Pn1, . . . , Pns) = s + 1 when ni ≥ 4 for all i in {1, . . . , s}.
Proof. Letting n = max{n1, . . . , ns}, it suffices to prove that R̊Δ(Pn; s) = s+ 1 when n ≥ 4.

The lower bound follows from Proposition 2.2 and the observation that R̊Δ(Pn; 1) = 2.

For the upper bound, we provide a strategy for Builder. We use induction on s; the

observation above establishes the case s = 1. Suppose that Builder can force Pn on Ss when

Painter has s − 1 colors available. Consider an s-color game on Ss+1. A consistent Painter

uses the same color on all isolated edges; without loss of generality, call this color blue. Let

the other s− 1 colors be shades of red. It suffices to show that for any k, Builder can force

either a Pn in some shade of red or a blue P2k in which each endpoint has global degree 1.
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We prove this claim by induction on k. The case k = 1 is immediate, since Painter colors

isolated edges blue. For the induction step, Builder first forces many blue copies of P2k−1

whose endpoints have global degree 1. Builder next selects one endpoint from each of these

blue paths. On these endpoints, Builder plays a winning strategy for the (s− 1)-color game

(Pn;Ss), provided by the overall induction hypothesis (the global degree remains at most

s + 1). If Painter uses only the s − 1 shades of red, then Pn arises in some shade of red.

Otherwise, Painter colors some edge blue; this connects two blue paths, yielding a blue P2k

whose endpoints still have global degree 1.

We next consider stars and double-stars.

Definition 2.4. A double-star is a tree with diameter 3. Such a tree has two central vertices;

we denote by Sa,b the double-star with central vertices of degrees a and b.

Theorem 2.5. If ai ≤ bi for all i in {1, . . . , s}, then

b1 − 1 +

s∑
i=2

(ai − 1) + 1 ≤ R̊Δ(Sa1,b1 , . . . , Sas,bs) ≤ min
X⊆{1,...,s}

fX(a1, . . . , as, b1, . . . , bs),

where

fX(a1, . . . , as, b1, . . . , bs) = 1 + max

{∑
i∈X

(bi − 1) +
∑
j �∈X

(aj − 1),
∑
i∈X

(ai − 1) +
∑
j �∈X

(bj − 1)

}
.

Proof. The lower bound follows by induction on s, using Proposition 2.2 and the observation

that R̊Δ(Sa,b; 1) = b when a ≤ b.

To establish the upper bound, we provide a strategy for Builder. Builder first partitions

the set of available colors into some sets X and Y . Builder aims to make two special vertices

u and v the central vertices of a monochromatic double-star. Let the quota of u in color i be

bi − 1 if i ∈ X and ai − 1 if i ∈ Y . For v, use the reverse values: the quota of v in color i is

ai − 1 if i ∈ X and bi − 1 if i ∈ Y . Whenever u or v reaches its quota of incident edges in

a color c, call that vertex saturated in color c. Note that coloring uv with a color in which

both u and v are saturated produces the desired monochromatic double-star in that color.

Starting with u and v as isolated vertices, Builder repeats the following process for the

remainder of the game. Let Gu and Gv denote the current components of the presented

graph that contain u and v, respectively. Builder presents edge uv; let c be the color Painter

uses on it. If u was not already saturated in c, then Builder adds uv and all of Gv to Gu,

creates new copies of v and Gv, and repeats. If u was saturated in c but v was not, then

Builder adds uv and all of Gu to Gv, creates new copies of u and Gu, and repeats. Finally,

if both u and v were already saturated in c, then u and v are now the central vertices of a

monochromatic Sac,bc in color c, and Builder has won.
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Whenever Gu or Gv is enlarged, the special vertex receives another incident edge, so

always u or v has maximum global degree after Gu and Gv are “recreated”. When Builder

is ready to present the edge uv, the degree of u is at most
∑

i∈X(bi−1) +
∑

j /∈X(aj −1), and

the degree of v is at most
∑

i∈X(ai − 1) +
∑

j /∈X(bj − 1). Thus the maximum degree used is

at most one more than the maximum of these two quantities. Optimizing over the choice of

X yields the stated bound.

In the diagonal case, the minimum over X in the upper bound in Theorem 2.5 occurs

whenever |X| = �s/2�. This yields a much simpler formula:

Corollary 2.6. If a ≤ b, then R̊Δ(Sa,b; s) ≤ �s/2� (b− 1) + 	s/2
 (a− 1) + 1.

When ai = bi for all i, the upper and lower bounds in Theorem 2.5 coincide:

Corollary 2.7. For “symmmetric” double stars, R̊Δ(Sb1,b1 , . . . , Sbs,bs) =
∑s

i=1(bi − 1) + 1.

In particular, R̊Δ(Sb,b; s) = s(b− 1) + 1.

When each double-star is in fact a star, the upper bound in Theorem 2.5 is the correct

value. The answer is obtained by splitting the sum of the sizes of the stars as equally as

possible and using the larger half in such a split.

Theorem 2.8. R̊Δ(K1,k1 , . . . , K1,ks) = 1 + minX⊆{1,...,s} max
{∑

i∈X(ki − 1),
∑

i/∈X(ki − 1)
}
.

In particular, R̊Δ(K1,k; s) =
⌈
s
2

⌉
(k − 1) + 1.

Proof. The upper bound follows from Theorem 2.5.

For the lower bound, we provide a strategy for Painter to win on Sd−1, where d is the

claimed bound. Call a vertex saturated in color i when it lies on ki − 1 edges of color i.

Painter’s strategy is straightforward: when Builder presents an edge, Painter colors it with

any color in which neither endpoint is already saturated.

To show that this is always possible, consider the possibility of Builder playing an edge

uv. If no color is available for use on uv, then for each i, either u or v is saturated in color

i. Let X be the set of colors in which u is saturated; u has degree at least
∑

i∈X(ki − 1).

Likewise, since v is saturated in the remaining colors, v has degree at least
∑

i/∈X(ki − 1).

Thus u or v already has degree at least d− 1, and Builder cannot present uv.

The lower bound in Theorem 2.8 yields a general lower bound:

Corollary 2.9. R̊Δ(G1, . . . , Gs) ≥ 1+minX⊆{1,...,s} max
{∑

i∈X(ki − 1),
∑

i/∈X(ki − 1)
}
, where

ki = Δ(Gi) for 1 ≤ i ≤ s.

Proof. The on-line degree Ramsey number is monotone: if G′
i ⊆ Gi for 1 ≤ i ≤ s, then

R̊Δ(G1, . . . , Gs) ≥ R̊Δ(G′
1, . . . , G

′
s). Consequently, R̊Δ(G1, . . . , Gs) ≥ R̊Δ(K1,k1, . . . , K1,ks),

and Theorem 2.8 applies.
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We next turn to general trees. Corollary 2.7 shows that R̊Δ(Sb,b; s) = s(b − 1) + 1; in

fact, this is the maximum value of R̊Δ(T ; s) over all trees with maximum degree b. This was

shown in [3] for s = 2; we prove the general result by a different approach.

Theorem 2.10. If T1, . . . , Ts are trees, then R̊Δ(T1, . . . , Ts) ≤
∑s

i=1(Δ(Ti) − 1) + 1. More-

over, the bound holds with equality whenever all Ti have adjacent vertices of maximum degree.

Proof. The sharpness follows from Corollary 2.7 and the monotonicity of R̊Δ.

For the upper bound, we provide a strategy for Builder. To simplify notation, let d be

the claimed bound, let ki = Δ(Ti), and let hi = |V (Ti)|. If each ki is 1, then Builder wins by

presenting a single edge. We proceed by induction on
∑

i ki. If any ki is 1, then Ti is a single

edge, so color i may be ignored: if Painter ever uses that color, then Builder wins. Thus

Builder wins by following a strategy to win (T1, . . . , Ti−1, Ti+1, . . . , Ts;Sd), the existence of

which is guaranteed by the induction hypothesis.

Hence we may assume ki ≥ 2 for each i. Let T k,h denote the rooted tree in which all

non-leaves have degree k and all leaves lie at distance h from the root. Since Ti ⊆ T ki,hi for

each i, by monotonicity it suffices to show that R̊Δ(T k1,h1, . . . , T ks,hs) ≤ ∑
i(ki − 1) + 1.

Builder aims to grow a tree containing T ki,hi in color i, for some i. More generally, let a

(k, h)-subtree be a rooted tree with the property that all non-leaves within distance h of the

root have degree k in the tree and all leaves within distance h of the root have global degree

1. Builder can force a (ki, hi)-subtree in color i for some i by playing a star with up to d

edges. The Pigeonhole Principle yields a star with ki edges in color i for some i by the time

this is finished, and such a star is a (ki, hi)-subtree.

It now suffices to show that if Builder can force a (ki, hi)-subtree T in color i, then he

can either win or force a (ki, hi)-subtree T ′ in color i that has more vertices than T within

distance hi of the root. This completes the proof because the number of vertices within

distance hi of the root of a (ki, hi)-subtree is maximized when the tree contains T ki,hi.

Without loss of generality, we may assume that the monochromatic star produced by

Painter when Builder starts the process with an isolated star has color 1, which we call red.

Let v be the root of the current red (k1, h1)-subtree, T . If T has no leaves with distance

less than h1 from v, then T contains T k1,h1, and Builder wins. Otherwise, let x be some

such leaf. Builder forces many copies of T (Builder plays against a consistent Painter). We

consider two cases.

Case 1: k1 ≥ 3. By the induction hypothesis, Builder has a strategy to win the game

(T k1−1,h1, T k2,h2, . . . , T ks,hs;Sd−1); Builder plays this strategy on the copies of x within the

copies of T . Since each copy of x had global degree 1 when its copy of T was created, the

presented graph remains within Sd. Builder either wins the original game (if the threshold

is reached in another color) or forces a red T k1−1,h1 (see Figure 1, where k1 = 3 and h1 = 2).

In the latter case, let T̂ be the red copy of T k1−1,h1 produced, and let x′ be its root. Let

v′ be the copy of v within the copy of T containing x′, and let T ′ be the maximal red tree

6



•

•

••

•
T̂

x′

v′•

•

••

•

•• •
• •

•
•

•
• •

x v

•• •
• •x

v
•• •

•• x

v

••
•••

xv

Figure 1: Induction step for Case 1 of Theorem 2.10 (k1 = 3 and h1 = 2)

rooted at v′ (in Figure 1, all edges drawn belong to T ′). All non-leaves of T ′ within distance

h1 of v′ lie on k1 red edges: those that were leaves in their copies of T lie on k1 − 1 red

edges from T̂ and one from T , while all others were non-leaves in their copies of T . Since

leaves of T̂ lie at distance h1 from x′, their distances from v′ exceed h1, so their degrees in

red are unimportant. Every leaf of T ′ within distance h1 of v′ has global degree 1, because

each corresponds to a leaf in its copy of T . Note that T ′ has more vertices within distance

h1 of v′ than T has within distance h1 of its root, since x′ acquires children in T̂ . Thus T ′

with root v′ is the desired (k1, h1)-subtree.

Case 2: k1 = 2. Builder cannot proceed as before, because T 1,h1 may not be well-

defined. Note that T 2,h1 is a path. Since k1 = 2, in the initial phase Builder can force many

red copies of P3 whose endpoints have global degree 1. Builder plays a winning strategy

for (P2, T
k2,h2, . . . , T ks,hs;Sd−1) on copies of x, where x is a leaf of the current red path that

Builder can force (with endpoints of global degree 1. If Painter uses no red edges, then

Builder wins, by the induction hypothesis. Otherwise, Builder obtains a longer red path in

which both endpoints have global degree 1; he then chooses x to be one of these endpoints

and repeats the process as needed, eventually either winning or obtaining a red T 2,h1.

In the diagonal case, the bound reduces to a simpler expression:

Corollary 2.11. If T is a tree, then R̊Δ(T ; s) ≤ s(Δ(T ) − 1) + 1.

For the sake of comparison between R̊Δ and RΔ, we remark that it was shown in [7] that

RΔ(T ) ≤ 2s(Δ(T )− 1) for any tree T ; it was shown in [9] that this bound is asymptotically

tight. Thus the maximum value of the on-line degree Ramsey number over the class of trees

is about half that of the “off-line” degree Ramsey number.
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Akad. Wiss. Math.-Natur. Kl. S.-B. II 176 (1967), 27–43.

8


