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Abstract

A hub set in a graph G is a set U ⊆ V (G) such that any two
vertices outside U are connected by a path whose internal vertices
lie in U . We prove that h(G) ≤ hc(G) ≤ γc(G) ≤ h(G) + 1, where
h(G), hc(G), γc(G) respectively are the minimum sizes of a hub set in
G, a hub set inducing a connected subgraph, and a connected dominat-
ing set. Furthermore, all graphs with γc(G) > hc(G) ≥ 4 are obtained
by substituting graphs into three consecutive vertices of a cycle; this
yields a polynomial-time algorithm to check whether hc(G) = γc(G).

1 Introduction

Introduced by Walsh [2], a hub set in a graph G is a set U of vertices in G
such that any two vertices outside U are connected by a path whose internal
vertices lie in U . Adjacent vertices are joined by a path with no internal
vertices, so the condition holds vacuously for them.
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The hub number of G, denoted h(G), is the minimum size of a hub set in
G. A connected set in G is a vertex set S such that the subgraph of G induced
by S (denoted G[S]) is connected. The connected hub number of G, denoted
hc(G), is the minimum size of a connected hub set in G. Various related
notions of connection, including these, were studied for integer lattices by
Hamburger, Vandell, and Walsh [1]. Walsh [2] studied the hub number for
several classes of graphs and showed that the hub number is at least the girth
minus 3.

Placing transmitters at the vertices of a hub set would enable communi-
cation among all vertices outside the set; this motivates seeking a small hub
set. The same idea motivates studying the connected domination number of
a graph. We show in this note that these problems are almost the same.

A dominating set in a graph G is a set S of vertices such that every
vertex in G outside S has a neighbor in S. The domination number of G,
denoted γ(G), is the minimum size of a dominating set in G. The connected
domination number, denoted γc(G), is the minimum size of a connected dom-
inating set. Connected dominating sets and connected hub sets exist only in
connected graphs.

In a connected graph, every connected hub set is a hub set, and every con-
nected dominating set is a connected hub set. Thus h(G) ≤ hc(G) ≤ γc(G).
We prove that also γc(G) ≤ h(G) + 1, obtained independently and concur-
rently by multiple subsets of the listed authors. No two of the parameters are
the same, though they may all be equal on particular graphs. We describe
the structure of graphs G such that γc(G) > hc(G) ≥ 4 and use this to give
a polynomial-time algorithm for determining whether hc(G) = γc(G).

2 Near-Equality of the Parameters

Theorem 2.1. For any connected graph G,

h(G) ≤ hc(G) ≤ γc(G) ≤ h(G) + 1

Proof. It remains to prove that γc(G) ≤ h(G) + 1. Let U be a smallest hub
set in G. We will construct a connected dominating set U ′ of size at most
|U |+ 1.

Since U is a smallest hub set, U 6= V (G). Hence we may choose a vertex
v outside U that has a neighbor in U . Initialize U ′ = {v}. Let C1, . . . , Ck be
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the components of G[U ] that contain no neighbor of v, and let D1, . . . , Dl be
those that do contain a neighbor of v.

Add all vertices of each Dj to U ′. From each Ci, choose a vertex ui

having a neighbor vi outside Ci; note that vi 6= v. Let wi be a vertex of Ci

farthest from ui in Ci; note that Ci − wi is connected (or empty). The set
V (Ci)− {wi} ∪ {vi} is connected; add it to U ′.

After starting with v, we added to U ′ vertex sets having the same size as
each component of G[U ]. Thus |U ′| ≤ |U | + 1 (the vertices of the form vi

need not be distinct).
It remains to show that U ′ is connected and dominating. Since v ∈ U ′,

both claims are proved by finding, for each vertex z, a z, v-path (that is, a
path from z to v) whose internal vertices all lie in U ′. By construction, such
paths exist for

⋃
V (Dj). For z ∈ V (G) − U , there must be a z, v-path P

whose internal vertices lie in U , since U is a hub set. If z is not adjacent to
v, then the internal vertices of P must lie in a component of G[U ] containing
a neighbor of v, and all vertices of such a component lie in U ′.

Finally, consider z ∈ V (Ci). The previous case found such a path for
vi. Since vi ∈ U ′, it suffices to find a z, vi-path with internal vertices in U ′.
Indeed, for each such z there is a z, vi-path whose internal vertices all lie in
V (Ci)− {wi}, and these vertices lie in U ′.

For the path Pn with n vertices, the three parameters have the same value:
h(Pn) = hc(Pn) = γc(Pn) = n−2. On the other hand, the 3-dimensional cube
Q3 has a hub set of size 3, but its connected hub and connected domination
numbers equal 4.

To make γc exceed the other parameters, let T be a tree of diameter 3,
with central edge uv. Form G from the disjoint union of Kr and T by making
each vertex of Kr adjacent to each leaf in T . Now {u, v} is a connected hub
set of size 2 (all nonadjacent pairs outside {u, v} are pairs of leaves of T ,
joined by paths through {u, v}). However, G has no connected dominating
set of size 2. We generalize this construction in the next section.

3 Distinguishing hc and γc

We introduce several additional concepts that will aid in characterizing the
graphs where γc > hc ≥ 4. We use N(x) for the set of vertices adjacent to x
in G.
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Definition 3.1. Let G and H be graphs with disjoint vertex sets. A graph
G′ is obtained from G by substituting H for v in G if G′ is obtained from the
disjoint union (G − v) + H by making every neighbor of v in G adjacent to
every vertex of V (H). A swollen k-cycle is a graph obtained from the cycle
Ck with vertices x1, . . . , xk in order by substituting a complete graph for x2

and substituting any graphs for x1 and x3.

The graphs constructed in the last example of Section 2 are swollen 5-
cycles. A thread in a graph G is a path whose internal vertices have degree
2 in G. In a swollen k-cycle with vertices indexed as in Definition 3.1, the
path with vertices x4, . . . , xk is a thread.

Lemma 3.2. If G is a swollen k-cycle, for k ≥ 4, then hc(G) = k − 3 =
γc(G) − 1, and the thread formed by the k − 3 unsubstituted vertices is a
connected hub set.

Proof. Let P be the thread of unsubstituted vertices in G, indexed as x4, . . . , xk

in order. Let F and F ′ be the graphs substituted for x1 and x3, respectively,
and let Q be the complete graph substituted for x2. Since the only nonad-
jacent vertices outside P lie in F ∪ F ′, the path P is a connected hub set of
size k − 3. To complete the proof, it suffices by Theorem 2.1 to show that
γc(G) > k − 3.

Let S be a connected dominating set in G. Let Vi be the set of vertices in
G arising from vertex xi of the original cycle in the construction of G. Since
S is connected, the sets in {V1, . . . , Vk} that S intersects must be consecutive
(cyclically). If three sets are missed, then the vertices in the middle set are
not dominated. Hence |S| ≥ k − 2.

Other examples arise for graphs with very small hub sets. Note that
hc(Kn) = 0. When hc(G) = 1 and γc(G) = 2, let x be a connected hub set.
The vertices outside N(x) must form a nonempty clique, and each must be
adjacent to all of N(x). Any edges can be added within N(x) as long as
no dominating vertex is created. Since N(x) may be connected, G need not
be a swollen 4-cycle. Similar examples occur when hc(G) is 2 or 3, with G
differing from a swollen (hc(G) + 3)-cycle by having additional edges in the
neighborhood of the endpoints of the thread. For hc(G) > 3, there is no such
flexibility.

Theorem 3.3. If G is a graph with γc(G) > hc(G) = r ≥ 4, then G is a
swollen (r + 3)-cycle.
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Proof. Let U be a smallest connected hub set, and let H = G[U ]. We show
first that H is a thread. Let W = N(U) − U and Q = G − (U ∪ W ). Since
U is not a dominating set, V (Q) is nonempty. Since U is a hub set, Q is
complete, and its vertices are adjacent to all of W . Since G is connected,
W 6= ∅. Choose v ∈ V (H) having a neighbor w ∈ W . Choose any spanning
tree T of H rooted at v, let S be the set of (non-root) leaves of T , and let y
be a vertex of Q. Now (U − S) ∪ {w, y} is a connected dominating set of G.
Since γc(G) > |U |, we have |S| ≤ 1. Since this holds for every choice of T ,
H must be a path with v at one end. Since this also holds for every choice
of v having a neighbor outside H, in fact H is a thread. Let u be the other
endpoint of H.

If u has no neighbor in W , then U − {u} plus any vertex of W forms a
connected dominating set of size r. Hence N(u)∩W 6= ∅. At this point, G is
a swollen (r + 3)-cycle unless u and v have a common neighbor or some edge
has endpoints in N(u)∩W and N(v)∩W . Let Z consist of those endpoints
or of a vertex in N(u) ∩N(v). In either case, let Y be a set of two adjacent
internal vertices of H; this exists since r ≥ 4. Now (U∪Z)−Y is a connected
dominating set with size at most r, which is a contradiction. We conclude
that G is a swollen (r + 3)-cycle.

Theorem 3.4. Given a graph G, there exists an algorithm to decide, in
polynomial time, whether or not hc(G) = γc(G).

Proof. By checking all sets of size at most 3, we may compute hc(G) if
hc(G) < 4. In this case, we can also check sets of size at most 3 to test
whether γc(G) = hc(G). If hc(G) ≥ 4, then it suffices to determine whether
G is a swollen cycle. For each edge e of G, we can find the longest thread
containing e, find the neighborhoods of the endpoints u and v, check whether
those neighborhoods (outside the thread) are disjoint and not joined by any
edges, and check whether the remaining set of vertices is a nonempty clique
whose vertices are all adjacent to the neighbors of u and v that are not in the
thread. If these properties do not all hold for some edge, then γc(G) = hc(G),
by Theorem 3.3.

This theorem yields, as a corollary, a simpler proof of a complexity result
in [2], because the problem of deciding whether a graph has a connected dom-
inating set of size at most k is well-known to be NP-hard (in both problems,
k is part of the input).
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Corollary 3.5. The problem of deciding whether a graph has a connected
hub set of size at most k is NP-hard.
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