
Degree Ramsey numbers of graphs

William B. Kinnersley∗, Kevin G. Milans†, Douglas B. West‡

Abstract

Let H
s→ G mean that every s-coloring of E(H) produces a monochromatic copy

of G in some color class. Let the s-color degree Ramsey number of a graph G, written

R∆(G; s), be min{∆(H) : H
s→ G}. If T is a tree in which one vertex has degree at most

k and all others have degree at most ⌈k/2⌉, then R∆(T ; s) = s(k − 1) + ǫ, where ǫ = 1

when k is odd and ǫ = 0 when k is even. For general trees, R∆(T ; s) ≤ 2s(∆(T ) − 1).

To study sharpness of the upper bound, consider the double-star Sa,b, the tree whose

two non-leaf vertices have have degrees a and b. If a ≤ b, then R∆(Sa,b; 2) is 2b − 2

when a < b and b is even; it is 2b − 1 otherwise. If s is fixed and at least 3, then

R∆(Sb,b; s) = f(s)(b − 1) − o(b), where f(s) = 2s − 3.5 − O(s−1).

We prove several results about edge-colorings of bounded-degree graphs that are re-

lated to degree Ramsey numbers of paths. Finally, for cycles we show that R∆(C2k+1; s) ≥
2s + 1, that R∆(C2k; s) ≥ 2s, and that R∆(C4; 2) = 5. For the latter we prove the

stronger statement that every graph with maximum degree at most 4 has a 2-edge-

coloring such that the subgraph in each color class has girth at least 5.

1 Introduction

Given a target graph G, classical graph Ramsey theory seeks a graph H such that every

2-edge-coloring of H produces a monochromatic copy of G. Such a graph H is a Ramsey

host for G; we then write H → G and say that H arrows or forces G. More generally, we

write H
s→ G when every s-edge-coloring of E(H) produces a monochromatic copy of G.

The classical Ramsey number of a graph G, written R(G; s) in the general s-color setting,

is the least n such that Kn
s→ G, guaranteed to exist by Ramsey’s Theorem [23]. Note that
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R(G; s) = min{|V (H)| : H
s→ G}. More generally, for any mononotone graph parameter ρ,

the ρ-Ramsey number of G, written Rρ(G; s), is min{ρ(H) : H
s→ G}.

The general study of parameter Ramsey numbers was initiated by Burr, Erdős, and

Lovász [6]. The notion has been studied with ρ(G) being the clique number [14, 21], the

chromatic number [6, 27, 28], the number of edges (called the size Ramsey number) [3, 4, 10,

12, 15, 24], and the maximum degree [6]. Parameter Ramsey numbers are more difficult than

ordinary Ramsey numbers in the sense that one may need to consider many more potential

host graphs to determine whether Rρ(G) ≤ k.

In this paper, we study the degree Ramsey number, R∆(G; s), where ∆(G) denotes the

maximum degree of G. Burr, Erdős, and Lovász [6] began its study (for s = 2), showing

that R∆(Kn; s) = R(Kn; s) − 1 and computing R∆(K1,m; 2). In Theorem 2.2 we extend

that computation to the s-color setting, showing that R∆(K1,m; s) is s(m − 1) + 1 when m

is odd and s(m − 1) when m is even. The computation for stars proves sharpness of an

upper bound that holds for a large family of trees. In particular, R∆(T ; s) ≤ R∆(K1,m; s)

whenever T is a tree with one vertex of degree at most m whose other vertices all have

degree at most ⌈m/2⌉ (Theorem 2.4). Letting m be 2∆(T ) gives the general upper bound

R∆(T ; s) ≤ 2s∆(T ) − s + 1, which can be improved to 2s(∆(T ) − 1).

For general trees and large s, the upper bound is not far from sharp. To obtain a lower

bound for trees having adjacent vertices of high degree, consider the double-star Sa,b, the tree

having adjacent vertices of degrees a and b and no other non-leaf vertices. For fixed s least

3, we prove in Section 3 that R∆(Sb,b; s) = f(s)(b−1)−o(b), where f(s) = 2s−3.5−O(s−1).

The lower-bound argument colors any graph with smaller maximum degree probabilistically,

so that with positive probability the resulting coloring has no monochromatic Sb,b. The

situation is simpler when s = 2; we prove that R∆(Sa,b; 2) is 2b−2 when a < b and b is even,

and is 2b − 1 otherwise when a ≤ b.

In Section 4, we study edge-colorings of bounded-degree graphs in relation to R∆(Pn; s).

A short argument by Alon, Ding, Oporowski, and Vertigan [2] involving counting arguments

and girth proves R∆(Pn; s) ≤ 2s for all n. They used a probabilistic construction to prove

that equality holds when n is sufficiently large (for fixed s), showing the existence of an edge-

coloring of any graph with maximum degree at most 2s−1 that has no large monochromatic

connected subgraph. With a more detailed look at the upper bound, we prove for fixed n

that H
s→ Pn for almost all graphs H with maximum degree at most 2s. For the case s = 2,

Thomassen [26] showed that the edges of any 3-regular graph can be 2-colored so that every

monochromatic connected subgraph is contained in P6. This yields R∆(Pn; 2) = 4 for n ≥ 7.

Thomassen’s proof was long; we give a short combinatorial proof of a weaker result implying

that R∆(Pn; 2) = 4 for n > 15. Although R∆(Pn; 2) = 3 for n ∈ {4, 5}, it remains open

whether R∆(P6; 2) is 3 or 4. For short paths, an old result of Egawa, Urabe, Fukuda, and
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Nagoya [11] yields R∆(P4; s) ≤ 2s− 3 for s ≥ 4, and we show that always R∆(P4; s) ≥ s+1.

Section 5 concerns cycles. The values for C3 follow from R∆(Kn; s) = R(Kn; s) − 1,

as noted earlier. Using Brooks’ Theorem [5] and the fact that every 2s-chromatic graph

decomposes into s bipartite subgraphs, we obtain R∆(C2k+1; s) ≥ 2s + 1 for all odd cycles.

For even cycles we obtain only R∆(C2k; s) ≥ 2s (Proposition 5.3); no better general lower

bounds are known for even cycles.

In Theorem 5.5, we prove that R∆(C4; 2) ≥ 5; equality holds from the result of Beineke

and Schwenk [7] that K5,5 → C4. To obtain the lower bound, we prove the stronger

statement that every graph with maximum degree at most 4 has a 2-edge-coloring such

that the subgraph in each color class has girth at least 5. The best known general upper

bounds for s = 2 are R∆(C2k; 2) ≤ 96 and R∆(C2k+1; 2) ≤ 3458 (see [17]). In addition to

R∆(C3; 2) = R∆(C4; 2) = 5, the only other degree Ramsey number for cycles that is known

exactly is R∆(C3; 3) = 16, which follows from R(C3; 3) = 17.

The results of [17] show in addition that the 2-color degree Ramsey number of any graph

with maximum degree 2 is bounded by 3458. It is natural to ask whether in general the

2-color (or s-color) degree Ramsey number is bounded by a function of the maximum degree.

2 Trees

We begin with the computation of R∆(K1,m; s), applying classical results of graph theory.

One upper bound uses a variation of a result of Bollobás, Saito, and Wormald [8]. They

proved the existence of r-regular graphs without k-factors (for odd k); we will need such

graphs with large girth. A k-factor of a graph G is a k-regular spanning subgraph of G. The

girth of a graph G is the length of a shortest cycle in G. We use the result of Erdős and

Sachs [13] that for each k and g there exist k-regular graphs with girth at least g.

Lemma 2.1. If r > k with k odd, and g ≥ 3, then there exists a graph that is r-regular, has

girth at least g, and has no k-factor.

Proof. First consider even r. Let G be an r-regular graph with girth at least g + 1. If

|V (G)| is odd, then G has no k-factor. Otherwise, fix v ∈ V (G). Since G is triangle-free,

no neighbors of v are adjacent. Remove v and add a matching on its neighbors to create an

r-regular graph G′ with an odd number of vertices. A cycle C in G′ that was not in G uses

at least one new edge. If C uses only one new edge, then replacing it with two edges at v

yields a cycle in G. If C uses at least two new edges, then C contains a path in G from one

such edge to the next one, joining two neighbors of v, making C at least as long as a cycle

in G. Hence every cycle in G′ has length at least g.
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Now consider odd r. We use a construction like that in [8] (for their case λ = 1). Let J

be a graph in which all vertices have degree r except for one vertex x having degree r − 1.

Construct a graph G by taking r copies of J and adding a new vertex y adjacent to all r

copies of x. Suppose that G has a k-factor, H. Since r is odd and r − 1 is even, |V (J)| is

odd; thus J has no k-factor. Since a k-factor has degree k at every vertex, in H all r copies

of J receive an edge from y, which contradicts dH(y) = k. Thus G has no k-factor.

To complete the proof, it suffices to show that such a graph J exists with girth at least

g (no cycles are added through y). Let F be an r-regular graph with girth at least g + 1,

and fix v ∈ V (F ). Again the neighbors of v form an independent set. Form J by removing

v and adding a matching of size (r − 1)/2 on the neighbors of v. By the argument in the

first paragraph, J has girth at least g, and the vertex degrees are as desired. ¤

We will use Lemma 2.1 to determine R∆(K1,m; s), but we do not yet need its full power;

for the upper bound on R∆(K1,m; s) we will not need large girth. The other results we need

are Vizing’s Theorem [25], which states that the edge-chromatic number of a graph G is at

most ∆(G) + 1, and Petersen’s Theorem [22], which states that every regular graph of even

degree decomposes into 2-factors.

Theorem 2.2. If s ≥ 2, then R∆(K1,m; s) =

{

s(m − 1), m even;

s(m − 1) + 1, m odd.

Proof. For the upper bound, the pigeonhole principle yields K1,s(m−1)+1
s→ K1,m. When m is

even, we can improve the upper bound. By Lemma 2.1, there is an (s(m− 1))-regular graph

H having no (m−1)-factor; H
s→ K1,m, since an s-edge-coloring of G with no monochromatic

K1,m would be a decomposition of H into (m − 1)-factors.

For the lower bound, let H be a graph with ∆(H) < s(m − 1). By Vizing’s Theorem,

H is s(m − 1)-edge-colorable, so E(H) is the disjoint union of s(m − 1) matchings. Taking

each color class to be the union of m − 1 of these matchings yields an s-edge-coloring of H

with no monochromatic K1,m. When m is odd, we can improve the lower bound. For any

graph H with maximum degree s(m − 1), let H ′ be an s(m − 1)-regular supergraph of H.

By Petersen’s Theorem, H ′ decomposes into 2-factors. Taking each of s color classes to be

the union of (m − 1)/2 of these 2-factors yields an s-edge-coloring of H ′ with degree m − 1

in each color at each vertex. ¤

Alon, Ding, Oporowski, and Vertigan [2] showed that R∆(Pn; s) = 2s for sufficiently

large n. Thus Theorem 2.2 shows that it is “harder” to force stars than paths. Tao Jiang

(unpublished) generalized the upper bound argument to show for any tree T that R∆(T ) ≤
2s(∆(T ) − 1). For trees with only one vertex of large degree (including all those having
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exactly one vertex with degree exceeding 2), Jiang’s argument can be improved. The upper

bound meets the lower bound from stars and hence computes the exact value for these

trees, since G ⊆ G′ implies R∆(G; s) ≤ R∆(G′; s). The lemma we need is a variation on a

well-known fact.

Lemma 2.3. Fix r, q ∈ N with q ≥ 2(r − 1). If a graph H has average degree more than q,

then H contains a subgraph with minimum degree at least r and average degree more than q.

Proof. Let H be a smallest counterexample; let n = |V (H)|. If H has a vertex x with degree

at most r − 1, then H − x has more than 1
2
nq − (r − 1) edges and hence has average degree

more than q. Hence H − x contains the desired subgraph. ¤

Theorem 2.4. If T is a tree in which one vertex has degree at most k and all others have

degree at most ⌈k/2⌉, then

R∆(T ; s) ≤







s(k − 1) k even;

s(k − 1) + 1 k odd.

Proof. Let ǫ = 1 if k is odd and ǫ = 0 if k is even. Let H be a regular graph having degree

s(k − 1) + ǫ and girth more than |V (T )|; by Lemma 2.1, we may also require H to have

no (k − 1)-factor when k is even. Given an s-edge-coloring of H, we seek a monochromatic

subgraph H ′ that has a vertex x of degree at least k and has minimum degree at least r,

where r = ⌈k/2⌉. In such a graph H ′, we can “grow” T from x by successively adding

children. When we want to grow from a current leaf, it has r − 1 neighbors in H ′ that (by

the girth condition) are not already in the tree.

To obtain H ′, first consider odd k, so r = (k + 1)/2. Since ǫ = 1, in any s-edge-coloring

of H some color class forms a spanning subgraph C with average degree more than k − 1.

Since k − 1 = 2(r − 1), by Lemma 2.3 C has a subgraph H ′ with minimum degree at least

r and average degree more than k − 1. By the condition on average degree, H ′ has a vertex

of degree at least k.

Now consider even k, with H as specified; note that 2(r − 1) = k − 2. Since ǫ = 0, some

color class yields a spanning subgraph C with average degree at least k − 1. Since H has no

(k − 1)-factor, C has a vertex of degree at least k. If it also has minimum degree at least

k/2, then it is the desired monochromatic subgraph H ′. Otherwise, delete a vertex x with

degree in C at most k/2− 1 (less than (k− 1)/2). The average degree in C −x is more than

k − 1. Now Lemma 2.3 yields a monochromatic subgraph H ′ with minimum degree at least

r and average degree more than k − 1. Again H ′ has a vertex of degree at least k. ¤
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As noted previously, the bound in Theorem 2.4 holds with equality when T also satisfies

∆(T ) = k. We stated it for k as an upper bound on ∆(T ) in order to obtain a general

upper bound for trees. For any tree T , setting k = 2∆(T ) − 1 in Theorem 2.4 yields

R∆(T ; s) ≤ 2s(∆(T ) − 1) + 1. Jiang’s earlier unpublished observation by an argument like

that of Theorem 2.4 improves this general bound by 1.

Theorem 2.5 (T. Jiang). If T is a tree, then R∆(T ; s) ≤ 2s(∆(T ) − 1).

Proof. Let r = ∆(T ), and let H be a 2s(r − 1)-regular graph with girth more than |V (T )|
(which exists by Erdős–Sachs [13]). Consider an s-edge-coloring of H. By the pigeonhole

principle, some color class yields a monochromatic spanning subgraph C with average degree

at least 2(r − 1). By Lemma 2.3 (the proof is essentially the same when “more than”

is changed to “at least” twice in Lemma 2.3), C has a monochromatic subgraph H ′ with

minimum degree at least r. Now T can be grown inside H ′ from any vertex, as in the proof

of Theorem 2.4. ¤

The result of [2] that R∆(Pn; s) = 2s shows that Theorem 2.5 is sharp when T is a path.

For large s, in the next section we will use trees with exactly two non-leaf vertices to show

that the coefficient 2s in Theorem 2.5 is almost sharp when s and ∆(T ) are large.

3 Double-Stars

The double-star Sa,b is the tree having two adjacent vertices of degrees a and b and no other

non-leaf vertices. The double-star Sa,b contains the star K1,b. Surprisingly, when s = 2 and

a ≤ b always R∆(Sa,b; s) = R∆(K1,b; s), except when a = b and b is even. This behavior fails

for larger s, so we begin with the exact results for s = 2. Given graphs G and H, we say

that an edge-coloring of H avoids G if no monochromatic copy of G appears in it.

Theorem 3.1. If a ≤ b, then R∆(Sa,b; 2) =







2b − 2 if a < b and b is even;

2b − 1 otherwise.

Proof. Theorem 2.2 with s = 2 yields the lower bound except when a = b and b is even. In

that case, let H be any connected graph with ∆(H) ≤ 2b−2, and let H ′ be a (2b−2)-regular

connected graph that contains H. Starting with a vertex v, follow an Eulerian circuit C in

H ′, coloring the edges by alternating red and blue along C. Each vertex of H ′ other than

v receives an edge of each color with each passage through it, totaling b − 1 edges of each

color (this holds also for v if and only if |E(H ′)| is even). Since every vertex other than v

has degree at most b − 1 in each color, it follows that H ′ 6→ Sb,b.
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For the upper bound, we first prove R∆(Sa,b) ≤ 2b−1 by showing that H → Sb,b whenever

H is a triangle-free (2b−1)-regular graph. Consider a red/blue edge-coloring of H that avoids

Sb,b. Call a vertex red when the majority (at least b) of its incident edges are red; otherwise it

is blue. Without loss of generality, at least half the vertices are red. Since H is triangle-free,

any red edge with red endpoints yields a red Sb,b, so each red edge has at least one blue

endpoint. Since a red vertex lies on at least b red edges and a blue vertex lies on at most

b − 1 red edges, H has more blue vertices than red vertices, a contradiction.

We improve the upper bound by 1 when a < b and b is even by showing that H → Sa,b

for a particular (2b − 2)-regular graph H. Form H using five disjoint vertex sets S0, . . . , S4

of size b − 1, making the neighborhood of each vertex in Si consist of Si−1 ∪ Si+1 (indices

taken modulo 5). (The graph H is often called the (b − 1)-blowup of a 5-cycle.)

Consider a red/blue edge-coloring of H that avoids Sa,b. Each vertex is red (at least b

incident red edges), blue (at least b incident blue edges), or tied (b− 1 incident edges of each

color). Not all are tied, since that would yield a regular subgraph with odd degree and odd

order (since b is even). Without loss of generality, assume that S0 contains a red vertex u.

Since H has no triangles and a < b, a red edge joining a red vertex to a red or tied vertex

yields a red copy of Sa,b. Therefore, the neighbors of a red vertex along red edges are blue;

similarly, neighbors of a blue vertex along blue edges are red. Since each Si has size b − 1,

and colored vertices have at least b incident edges in their color, when Si contains a colored

vertex it follows that some vertex of Si+1 has the opposite color. Starting from our red vertex

u in S0, we alternate finding blue and red vertices in successive sets to obtain a blue vertex v

in S0. Now in S1∪S4, the vertices adjacent to u along red edges are blue, and those adjacent

to v along blue edges are red. This requires |S1 ∪ S4| ≥ 2b, but |S1 ∪ S4| = 2b − 2. ¤

For s > 2, determining R∆(Sa,b; s) is more difficult. The proof of Theorem 3.1 does not

extend, because it no longer need be that more than half of the vertices in the graph being

colored have high degree in the same color. Nevertheless, Theorem 2.4 and Theorem 2.2

together compute R∆(Sa,b; s) when b ≥ 2a−1; the value is s(b−1)+1 or s(b−1), depending

on the parity of b. Hence we focus our attention on R∆(Sb,b; s). The additional motivation for

doing so is that this small tree shows that the general upper bound for trees in Theorem 2.5

is nearly sharp.

Definition 3.2. Given an s-edge-coloring of a graph H, we say that a vertex v is major in

some color if it lies on at least b edges of that color and minor otherwise. A minor edge is an

edge whose color is minor at both endpoints. Note that when the degree of a vertex exceeds

s(b − 1), the vertex must be major in at least one color. Let d∗(v) be the number of edges

incident to v whose colors are minor at v.
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Lemma 3.3. Let H be a triangle-free graph. If an edge-coloring of H that has r minor edges

avoids Sb,b, then

|E(H)| + r =
∑

v

d∗(v).

Proof. To avoid Sb,b, the color on each edge must be minor for at least one endpoint of the

edge. Grouping the edges by the endpoints at which their colors are minor yields the sum

on the right. Exactly r edges are counted twice. ¤

This lemma yields a slight improvement for Sb,b of the general upper bound for trees.

Corollary 3.4. If s ≥ 2, then R∆(Sb,b; s) ≤ 2(s − 1)(b − 1) + 1.

Proof. Let H be a k-regular triangle-free graph, and consider an s-edge-coloring that avoids

Sb,b. If k > s(b− 1), then each vertex is minor in at most s− 1 colors. From Lemma 3.3, we

then obtain nk
2
≤ nk

2
+ r ≤ n(s − 1)(b − 1), which simplifies to k ≤ 2(s − 1)(b − 1). ¤

We next improve Corollary 3.4 asymptotically, for fixed s with s ≥ 3. For clarity, we

split the proof into several lemmas. The proof of the first closely mirrors that of a lemma

by Alon [1], which he used to prove the existence of graphs having no “large” bipartite

subgraphs. We bound the number of edges in a k-partite subgraph of a d-regular graph in

terms of the sizes of the parts.

Definition 3.5. Let G be an n-vertex graph, and let x1, . . . , xk be nonnegative real numbers

summing to 1. An (x1, . . . , xk)-subgraph of G is a k-partite subgraph having partite sets of

sizes nx1, . . . , nxk.

A standard result in linear algebra states that the smallest eigenvalue of a real symmetric

matrix A of order n is infz∈Rn
〈Az,z〉
〈z,z〉 , where 〈x, y〉 denotes the inner product of x and y.

Lemma 3.6. Let G be a d-regular graph with n vertices and m edges, and let λ be its smallest

eigenvalue. If x1, . . . , xk are nonnegative real numbers summing to 1, then no (x1, . . . , xk)-

subgraph of G has more than (m − λn/2)
∑

i xi(1 − xi) edges.

Proof. Let A be the adjacency matrix of G. As remarked above, for every n-dimensional

vector ϕ we have λ 〈ϕ, ϕ〉 ≤ 〈Aϕ,ϕ〉 . Consider any partition of V (G) into X1, . . . , Xk, where

|Xi| = nxi, and let F be the (x1, . . . , xk)-subgraph of G with partite sets X1, . . . , Xk that

includes all edges with endpoints in different parts. For 1 ≤ i ≤ k, define the vector ϕ(i) by

setting ϕ
(i)
v = 1 − xi when v ∈ Xi and ϕ

(i)
v = −xi when v 6∈ Xi. Now

〈

Aϕ(i), ϕ(i)
〉

= 2
∑

uv∈E(G)

ϕ(i)
u ϕ(i)

v = d
∑

v∈V (G)

(ϕ(i)
v )2 −

∑

uv∈E(G)

(

ϕ(i)
u − ϕ(i)

v

)2

= d
〈

ϕ(i), ϕ(i)
〉

− |[Xi, V (G) − Xi]| ,
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where [X,Y ] denotes the set of edges joining X and Y . Summing over i now yields

λ
∑

〈

ϕ(i), ϕ(i)
〉

≤
∑

〈

Aϕ(i), ϕ(i)
〉

= d
∑

〈

ϕ(i), ϕ(i)
〉

− 2 |E(F )| .

Thus

|E(F )| ≤ 1

2
(d − λ)

∑

〈

ϕ(i), ϕ(i)
〉

.

Since

〈

ϕ(i), ϕ(i)
〉

= |Xi| (1 − xi)
2 + (n − |Xi|)x2

i = nxi(1 − xi)
2 + n(1 − xi)x

2
i = nxi(1 − xi),

we have

|E(F )| ≤ 1

2
(d − λ)n

∑

xi(1 − xi),

which simplifies to the claimed bound on |E(F )|. ¤

To apply this lemma, we need regular graphs whose smallest eigenvalues are large.

Lubotzky, Phillips, and Sarnak [18] defined a Ramanujan graph to be a regular graph whose

smallest eigenvalue is at least −2
√

p − 1, where p is the vertex degree. They constructed

p-regular Ramanujan graphs for all primes p congruent to 1 modulo 4. Morgenstern [19]

later constructed for each prime power p an infinite family of p-regular Ramanujan graphs

G having girth at least 2
3
logp |V (G)|. Morgenstern’s constructions and Lemma 3.6 together

yield the following result.

Proposition 3.7. Let p be a prime power, and let x1, . . . , xk be nonnegative real numbers

summing to 1. For infinitely many n, there is a p-regular triangle-free n-vertex graph G

having no (x1, . . . , xk)-subgraph F with more than (
∑

i xi(1 − xi)) (m+n
√

p − 1) edges, where

m = np/2 = |E(G)|.

Lemma 3.3 and Proposition 3.7 together yield an asymptotic upper bound on R∆(Sb,b; s).

Lemma 3.8. For fixed integer s, let U be the set of nonnegative s-tuples summing to 1. If

s ≥ 3, then R∆(Sb,b; s) ≤ 2(M + o(1))(b − 1), where

M = max
y∈U

∑s
i=1(s − i)yi

2 −
∑s

i=1 yi

[

1 − yi

(s
i)

] .

Proof. Let H be a d-regular triangle-free n-vertex Ramanujan graph with m edges. Suppose

that H has an s-edge-coloring avoiding Sb,b. We will show that d ≤ 2(M + o(1))(b − 1).

Taking y1 = 1 and y2 = · · · = ys = 0 yields M ≥ s/2, so the bound already holds unless

d > s(b − 1). Thus each vertex is major in at least one color.
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Let C be the set of colors used. For A ⊆ C, let XA be the set of vertices for which the

set of major colors is A (note that X∅ = ∅). For 1 ≤ i ≤ s, let Yi =
⋃{XA : |A| = i}. Let

yi = |Yi| /n. Let F be the maximal (spanning) subgraph of H in which each XA for A ⊆ C

is an independent set.

Let r be the number of minor edges in the given edge-coloring of H. Every edge joining

two vertices that are major in exactly the same colors must be minor, since otherwise it

would be the central edge of a monochromatic Sb,b. Thus r ≥ m− |E(F )|. Also, each vertex

in Yi lies on at most (s − i)(b − 1) minor edges. With Lemma 3.3, we obtain

2m − |E(F )| ≤ m + r =
∑

v∈V (H)

d∗(v) ≤ n(b − 1)
∑

i

(s − i)yi. (*)

To obtain an upper bound on m and hence on d, we need an upper bound on |E(F )|.
When y1, . . . , ys are fixed, the upper bound in Proposition 3.7 is maximized when |XA| /n =

y|A|/
(

s
|A|

)

for each A ⊆ C. Thus, |E(F )| ≤ ∑

i yi[1 − yi/
(

s
i

)

](m + n
√

d − 1). Since
∑

yi = 1,

we have
∑

i yi(1 − yi/
(

s
i

)

) ≤ 1. Hence |E(F )| ≤ m(
∑

i yi[1 − yi/
(

s
i

)

]) + n
√

d − 1; this

simplification will not change the asymptotics. Substituting into (∗) yields

m

(

2 −
∑

i

yi

[

1 − yi
(

s
i

)

]

)

− n
√

d − 1 ≤ 2m − |E(F )| ≤ n(b − 1)
∑

i

(s − i)yi.

Since m = nd/2, this further simplifies to

d

(

2 −
∑

i

yi

[

1 − yi
(

s
i

)

]

− 2
√

d − 1

d

)

≤ 2(b − 1)
∑

i

(s − i)yi.

Thus

d ≤ 2(b − 1)

∑

i(s − i)yi

2 − ∑

i yi[1 − yi/
(

s
i

)

] − o(1)
,

where the o(1) term tends to 0 as b tends to infinity (since d > s(b − 1)). Since
∑

i(s − i)yi

and 2 − ∑

i yi[1 − yi/
(

s
i

)

] are bounded, we may rewrite this as

d ≤ 2(b − 1)

(

∑

i(s − i)yi

2 − ∑

i yi[1 − yi/
(

s
i

)

]
+ o(1)

)

≤ 2(M + o(1))(b − 1).

Finally, it suffices to show that there exists a d-regular Ramanujan graph when d is just

a bit larger than this bound, which we call M ′. Fix ǫ > 0. For sufficiently large b, it follows

from Proposition 3.7 and the Prime Number Theorem that there exist d-regular Ramanujan

graphs with M ′ < d < (1 + ǫ)M ′. ¤
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We next show how to compute the value M in the statement of Lemma 3.8. The key

insight is that the maximum is attained when all but at most two of the variables are zero.

Lemma 3.9. For s ≥ 3, with U being the set of nonnegative s-tuples summing to 1,

M = max
y∈U

∑s
i=1(s − i)yi

2 − ∑s
i=1 yi

[

1 − yi

(s
i)

] =
s − 1

2

s +
√

s2 + s + 2 + 4/(s − 1)

s + 1 + 2/s
,

attained when yk = 0 for k ≥ 3 and y1 = 2 − s +
√

s2 − 3s + 6 − 8/(s + 1).

Proof. For notational convenience, let f(y1, . . . , ys) =
∑

i(s − i)yi and g(y1, . . . , ys) = 2 −
∑

i yi

(

1 − yi/
(

s
i

))

. Suppose that the claim is false, and let y1, . . . , ys be real numbers maxi-

mizing f/g subject to y ∈ U .

We first claim that yj = 0 when j ≥ 3. If yj > 0, then define y′
1, . . . , y

′
s by y′

j = 0 and

y′
1 = y1 + yj, with y′

i = yi for i /∈ {1, j}. Now f(y′
1, . . . , y

′
s) = f(y1, . . . , ys) + (j − 1)yj and

g(y′
1, . . . , y

′
s) = g(y1, . . . , ys) + y1

(

1 − y1

s

)

+ yj

(

1 − yj
(

s
j

)

)

− (y1 + yj)

(

1 − y1 + yj

s

)

= g(y1, . . . , ys) −
y2

j
(

s
j

) +
2y1yj + y2

j

s
.

We claim that f(y′
1, . . . , y

′
s)/g(y′

1, . . . , y
′
s) > f(y1, . . . , ys)/g(y1, . . . , ys). For positive real num-

bers a, b, c, d, the inequality a/b < (a + c)/(b + d) holds if and only if a/b < c/d. Letting

a = f(y1, . . . , ys), b = g(y1, . . . , ys), c = (j − 1)yj, and d =
2y1yj+y2

j

s
− y2

j

(s
j)

, it suffices to show

f(y1, . . . , ys)

g(y1, . . . , ys)
<

(j − 1)yj

2y1yj+y2

j

s
− y2

j

(s
j)

.

We compute

(j − 1)yj

2y1yj+y2

j

s
− y2

j

(s
j)

=
j − 1

2y1+yj

s
− yj

(s
j)

>
s(j − 1)

2y1 + yj

>
s(j − 1)

2
≥ s,

but f(y1, . . . , ys)/g(y1, . . . , ys) ≤ s− 1, since the numerator is at most s− 1 and the denom-

inator is at least 1.

Thus yi = 0 for i ≥ 3; consequently, y2 = 1 − y1. It remains to choose y ∈ [0, 1] to

maximize f(y,1−y,0,...,0)
g(y,1−y,0,...,0)

, which simplifies to s(s − 1)h(y), where h(y) = s−2+y
s(s−1)+(s−1)y2+2(1−y)2

.

Note that h(1) = 1/(s+1) and h(0) < 1/(s+1). Setting h′(y) = 0 yields a quadratic equation

for y whose solution ŷ is 2−s+
√

s2 − 3s + 6 − 8/(s + 1). This value is 1 when s = 3 (hence
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the requirement s ≥ 3) and declines slowly toward 1/2 as s increases, so it lies in [0, 1].

Rationalizing the denominator in the expression for h(ŷ) yields h(ŷ) = 1
2

√
s4−s3+s2+s−2+s(s−1)

s3+s−2
.

Dividing the denominator by s(s − 1) and extracting a factor of s − 1 from the numerator

yields the claimed expression for M . ¤

Theorem 3.10. For s ≥ 3,

R∆(Sb,b; s) ≤
(

(s − 1)
s +

√

s2 + s + 2 + 4/(s − 1)

s + 1 + 2/s
+ o(1)

)

(b − 1),

where the o(1) term tends to 0 as b tends to infinity.

Proof. Using the formula in Lemma 3.9 as the value of M , this becomes simply the statement

of Lemma 3.8. ¤

Our lower bound for R∆(Sb,b; s) asymptotically matches this upper bound. The value of

ŷ given in Lemma 3.8 will guide the construction.

Theorem 3.11. For s ≥ 3,

R∆(Sb,b; s) ≥
(

(s − 1)
s +

√

s2 + s + 2 + 4/(s − 1)

s + 1 + 2/s
− o(1)

)

(b − 1),

where the o(1) term tends to 0 as b tends to infinity.

Proof. Given a graph H with ∆(H) ≤ d, we construct a random s-coloring of E(H) that

avoids Sb,b with positive probability when d is suitably chosen. We may assume that H is

d-regular. Let C be a set of s colors.

We will assign each v ∈ V (H) a set c(v) of one or two colors in C, wanting only colors in

c(v) to be major for v. We try to match the bound from Lemma 3.9 by having the expected

fractions of vertices that are major in one color or two colors be ŷ and 1 − ŷ, respectively.

To this end, let p = 2 − s +
√

s2 − 3s + 6 − 8/(s + 1). For each vertex v of H, let

ǫ(v) = 1 with probability p and ǫ(v) = 2 otherwise. Next choose c(v) uniformly at random

from among all subsets of C with size ǫ(v). Given the resulting coloring of the vertices with

color sets of size at most 2, we produce a coloring of E(H), again probabilistically.

Fix uv ∈ E(H). First consider |c(u)| = |c(v)| = 1. If c(u) = c(v), then color uv with

a random color from C − c(u). If c(u) 6= c(v), then give uv the color in c(u) or c(v), each

with probability 1/2. Next suppose |c(u)| = 1 but |c(v)| = 2. If c(u) ⊂ c(v), then give

uv the color in c(v) − c(u). If instead c(u) ∩ c(v) = ∅, then give uv the color in c(u) with
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probability q and one of the colors in c(v) with probability (1 − q)/2 each, where q will be

specified later. Finally, suppose |c(u)| = |c(v)| = 2. If c(u) = c(v), then color uv randomly

from C − c(u). If |c(u) ∩ c(v)| = 1, then give uv a color from the symmetric difference, each

with probability 1/2. Finally, if c(u) ∩ c(v) = ∅, then color uv at random from c(u) ∪ c(v).

We claim that with positive probability every vertex v is major only in the colors in c(v),

when d and q are suitably chosen. It then holds by construction that no edge has a color

that is major at both endpoints, so the coloring avoids Sb,b.

Fix a vertex v and a color c′ not in c(v). Let X be a random variable denoting the number

of edges of color c′ incident to v. Let the neighbors of v be v1, . . . , vd. Now X = Y1 + · · ·+Yd,

where Yi is the indicator variable for the event that vvi has color c′. If |c(v)| = 1, then

Yi = 1 can occur in four ways: c(vi) = c(v), c(vi) = {c′}, c(v) ⊂ c(vi), and |c(vi)| = 2 with

c(v) 6⊂ c(vi). Using conditional probability in each case,

P
[

Yi = 1
∣

∣ǫ(v) = 1
]

=
1

s − 1
· p

s
+

1

2
· p

s
+ 1 · 2(1 − p)

s(s − 1)
+

1 − q

2
· (s − 2)

2(1 − p)

s(s − 1)
.

Similarly, if |c(v)| = 2, then the cases in which vvi can receive color c′ are c(vi) = {c′},
c(vi) = c(v), and |c(vi)| = 2 with |c(vi) ∩ c(v)| being 1 or 0. Thus

P
[

Yi = 1
∣

∣ǫ(v) = 2
]

= q · p

s
+

(

1

s − 2
+ 1 +

s − 3

4

)

· 2(1 − p)

s(s − 1)
.

Let p1 and p2 denote these two conditional probabilities. Since assigning color c′ to vvi is

dangerous, we want to choose q to minimize max{p1, p2}. As q increases, p2 increases and

p1 decreases, so we choose q to produce p1 = p2, which requires

q =
(s − 2)(s + 1) − 2s(1 − p)

2(s − 2)(s − 2 + p)
.

We observed in Lemma 3.9 that p > 1/2, which easily implies q > 0, and comparing the

numerator and denominator yields q < 1. Henceforth let p̂ denote the common value of p1

and p2 when q is so chosen. Since p1 = p2, we now have P [Yi = 1] = p̂. With p̂ = P [Yi = 1]

and H being d-regular, we have E [X] = E [
∑

i Yi] = dp̂.

Now let d =
⌊

(1 − b−1/3)(b − 1)/p̂
⌋

, so E [X] ≤ (1−b−1/3)(b−1). Since b−1 ≥ (1+δ)E [X],

where δ = 1/(b1/3 − 1), the Chernoff Bound yields

P [X > b − 1] ≤ P [X > (1 + δ)E [X]] < e−
δ2

3
(1−b−1/3)(b−1).

Note that δ2(1 − b−1/3)(b − 1) = b1/3 + 1 + b−1/3. Let Bv be the event that v is major in a

color outside c(v). By the Union Bound,

P [Bv] < (s − 1)e−
1

3
(b1/3+1+b−1/3).

13



The occurrence of Bv is determined by the color sets chosen at v and its neighbors and

some choices made for edges incident to v. If v and w have a common neighbor, then Bv

and Bw both make use of the color set chosen at that common neighbor. Nevertheless, Bv

is mutually independent of the set of all Bu such that the distance between u and v is at

least 3. Thus Bv is mutually independent of a set of all but at most d2 other events. The

symmetric version of the Lovász Local Lemma now states that P
[
⋂

v Bv

]

> 0 so long as

e · (s − 1)e−
1

3
(b1/3+1+b−1/3) · (d2 + 1) < 1.

Since d is bounded by a polynomial in b divided by a constant (p̂ depends only on s), the

inequality holds for sufficiently large b.

We have now shown that for some outcome of the vertex coloring (when b is sufficiently

large), there is an outcome of the edge-coloring process that avoids Sb,b. It remains only

to show that the degree for which we produced this coloring is (2M − o(1))(b − 1). Since

d = (1 − o(1))(b − 1)/p̂, to complete the proof it suffices to prove that p̂ = 1/(2M).

We show that s(s−1)( 1
2M

−p̂) = 0. Since ŷ = p, we have s(s−1)
2M

= 1
2h(ŷ)

= s(s−1)+(s−1)p2+2(1−p)2

2(s−2+p)
.

Since h′(ŷ) = 0 yields

s(s − 1) + (s − 1)p2 + 2(1 − p)2 = (s − 2 + p)[2p(s − 1) − 4(1 − p)], (*)

we obtain s(s−1)
2M

= p(s − 1) − 2(1 − p). Using the formula for p2, we have s(s − 1)p̂ =

qp(s − 1) + ( 1
s−2

+ 1 + s−3
4

)2(1 − p). Now

s(s − 1)

(

1

2M
− p̂

)

= (1 − q)p(s − 1) −
(

1

s − 2
+ 2 +

s − 3

4

)

2(1 − p).

Multiply by 2(s − 2)(s − 2 + p), the denominator in the formula for q; this does not change

whether the value on both sides is 0. For the right side, we compute

[2(s − 2)(s − 2 + p) − (s − 2)(s + 1) + 2s(1 − p)]p(s − 1) − (s2 + 3s − 6)(1 − p)(s − 2 + p)

= (s − 2)[(s + 1)p2 + 2(s + 1)(s − 2)p − (s2 + 3s − 6)] = 0,

since the last quadratic factor being 0 is equivalent to (∗). ¤

Note that p = 1 when s = 3, so in this case the coloring for the lower bound makes

every vertex major in exactly one color. For large s, the leading terms of the numerator and

denominator in the expression we obtained for R∆(Sb,b; s) suggest that the value asymptoti-

cally equals the bound 2(s− 1)(b− 1) obtained in Corollary 3.4. However, the coefficient on

b − 1 is actually smaller; we need the two leading terms when multiplying by s − 1.
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Corollary 3.12. For fixed s (with s ≥ 3) and large b, we have R∆(Sb,b; s) = (cs+o(1))(b−1),

where c3 = 3, c4 = 2 + 2
11

(1 +
√

210) ≈ 4.8166, and in general cs = 2s − 3.5 + O(s−1).

Proof. Divide the numerator and denominator of the expression for 2M by s. Then take the

two leading terms of the series expansions for the square root and for the reciprocal of the

denominator. This yields

2M = (s − 1)
1 +

√

1 + s−1 + 2s−2 + 4s−2(s − 1)−1

1 + s−1 + 2s−2

= (s − 1)(1 + 1 +
1

2
s−1 + O(s−2))(1 − s−1 + O(s−2)) = 2s − 3.5 + O(s−1).

¤

4 Paths

For the path Pm, the degree Ramsey number R∆(Pm; s) is bounded, independent of m. Alon,

Ding, Oporowski, and Vertigan [2] proved that R∆(Pm; s) = 2s when m is sufficiently large

(for fixed s). The upper bound holds for all m; the argument is a special case of that given

in Theorem 2.5. In fact, the main result of this section is that H
s→ Pm for almost every

graph H with maximum degree at most 2s.

Given an edge-colored graph G, we call a maximal monochromatic connected subgraph

a slice of G. For the lower bound, it was proved in [2] that for each s, there is a constant

c such that every graph with maximum degree less than 2s has an s-edge-coloring in which

every slice has fewer than c edges. Thus R∆(Pm; s) ≥ 2s for m > c.

In [2], the authors did not give a sharp analysis of this value c. When s = 2, more precise

results are known. Thomassen [26] showed that if ∆(H) ≤ 3, then there is a 2-edge-coloring

of H in which every slice is a subgraph of P6. Consequently, R∆(Pm; 2) = 4 when m ≥ 7.

The other exact values are easy except for P6.

Proposition 4.1. R∆(Pm; 2) = m − 1 for m ≤ 3, and R∆(Pm; 2) = 3 for m ∈ {4, 5}.
Proof. For P2 use an edge, for P3 an odd cycle. For m ∈ {4, 5}, we have R∆(Pm) ≥ 3 because

paths and cycles can be 2-edge-colored without three consecutive edges of the same color.

To show R∆(Pm) ≤ 3 for n ∈ {4, 5}, we prove that H → P5 when H is the Petersen

graph. Consider a red/blue edge-coloring of H. Since H contains odd cycles, we may assume

a red P3. If there is no red P4, then the four edges incident to the endpoints of this P3 are

all blue. Furthermore, the edges incident to the endpoints of these blue copies of P3 must

all be red, but this set of red edges contains P4.

Hence we may assume a red P4. If there is no red P5, then the four edges incident to the

endpoints of this P4 are all blue, but these four edges form P5. ¤
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It remains open whether R∆(P6; 2) is 3 or 4. It is easy to color the Petersen graph

avoiding P6; color a perfect matching blue, and the remaining edges form two disjoint red

5-cycles. Also the Heawood graph (the 3-regular 14-vertex (3, 6)-cage, also known as the

incidence graph of the Fano plane) has a 2-edge-coloring that avoids P6, as in Fig. 1. (The

graph in the bold color is 2P5 + P3; the graph in the solid color is 2P5 + K1,3.)

•

•

•

•
• • •

•

•

•

•
•••

Figure 1: A 2-edge-coloring of the Heawood graph.

Conjecture 4.2. R∆(P6; 2) = 4.

Thomassen’s proof that graphs with maximum degree 3 have 2-edge-colorings with every

slice contained in P6 is long. We give a short proof of the weaker result that there is a

2-edge-coloring in which every slice has at most 25 vertices, and more importantly every

monochromatic path has at most 15 vertices; this yields R∆(Pm; 2) = 4 for m > 15. In the

bipartite case, it is easy to prove a result similar to Thomassen’s.

Lemma 4.3. Let P ′
7 be the tree obtained from P7 by adding a leaf adjacent to the central

vertex. If G is a bipartite graph with ∆(G) ≤ 3, then G has a 2-edge-coloring in which all

slices are subgraphs of P ′
7.

Proof. It suffices to prove the claim when G is 3-regular, in which case G has a perfect

matching M . Let X and Y be the partite sets of G, and let H = G − M . Since H is

2-regular, it consists of disjoint even cycles.

First color E(H). When the length of a component of H is an even multiple of 2, alternate

two red edges and two blue edges so that the center of each monochromatic 3-vertex path

is in X. When the length is an odd multiple of 2, do the same, except that one of the

monochromatic paths has length 4. All leaves of all monochromatic paths in H lie in Y .

It remains to color M . A vertex x ∈ X is an internal vertex of some monochromatic

path in H; give the edge of M incident to x the opposite color. Monochromatic subgraphs
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of H grow only by adding edges of M at vertices of Y ; a monochromatic copy of P3 can only

grow to a monochromatic copy of P4 or P5, and a monochromatic copy of P5 can grow to as

large as P ′
7 if it grows at each of its vertices in Y . ¤

Theorem 4.4. If ∆(G) ≤ 3, then G has a 2-edge-coloring in which each slice has at most

25 vertices and each monochromatic path has at most 15 vertices.

Proof. We may assume that G is connected and that G 6= K4, so Brooks’ Theorem yields

χ(G) ≤ 3. By Lemma 4.3, we may assume that χ(G) = 3.

Let {V1, V2, V3} be a proper 3-coloring of G with each vertex of V3 having neighbors in

both V1 and V2. For u ∈ V3, choose neighbors u1 ∈ V1 and u2 ∈ V2. Let H be the graph on

V1∪V2 obtained from G−V3 by adding the edge u1u2 for each u ∈ V3 such that u1u2 /∈ E(G).

Since ∆(H) ≤ 3, Lemma 4.3 yields a 2-edge-coloring f of H whose slices are subgraphs of P ′
7.

Color E(G) as follows. Edges joining V1 and V2 keep the color they have under f . Each

remaining edge is incident to a vertex u ∈ V3. Color uu1 and uu2 in G with the color that

u1u2 has under f , and use the opposite color on a third edge incident to u, if it exists.

In progressing from H to G, monochromatic connected subgraphs can grow via edges inci-

dent to vertices in V3. Two edges incident to u ∈ V3 receive the same color only if their other

endpoints form an edge of that color in H. Therefore, monochromatic connected subgraphs

in H can grow only by adding leaves to monochromatic trees in H or by adding a common

neighbor to vertices already adjacent in H. In particular, no two connected subgraphs of H

having the same color can combine by adding edges of that color to V3.

Because ∆(H) ≤ 3 and each slice F of H is a tree with k vertices, where k ≤ 8, at most

3k − 2(k − 1) edges can join F to vertices of V3 in G in addition to the k − 1 vertices of

V3 that can produced elements of E(H) − E(G). Hence F grows by adding at most 2k + 1

vertices to the original k vertices, so slices in the edge-coloring of G have at most 25 vertices.

Consider also monochromatic paths. Again they arise from connected subgraphs of H

that are monochromatic under f . Such a path can have one edge at each end incident to V3.

Other edges incident to V3 occur only by visiting u ∈ V3 between u1 and u2. This may occur

for each edge of a monochromatic path in H, since those edges need not exist in G. Since

the maximum number of vertices in a monochromatic path under f is 7, we thus obtain 15

as the maximum number of vertices in a monochromatic path in the edge-coloring of G. ¤

For fixed s, we have R∆(Pm; s) = 2s when m is sufficiently large. In addition to finding

the least m where equality holds, it would also be interesting to know the s-color degree

Ramsey numbers for small paths. Since P3 = K1,2, Theorem 2.2 yields R∆(P3; s) = s, so

the first nontrivial problem is for P4. When H is bipartite, an s-edge-coloring that avoids
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P4 is simply a decomposition of H into star-forests (forests in which each component is a

star). The minimum number of star-forests needed to decompose H is the star-arboricity

of H. The star-arboricity was determined for regular complete bipartite graphs by Egawa,

Urabe, Fukuda, and Nagoya [11].

Lemma 4.5 ([11]). When s ≥ 4, the star arboricity is s+1 for both K2s−3,2s−3 and K2s−2,2s−2.

Although [11] claims this result only for s ≥ 5, in fact their elegant counting argument

to show that K2s−3,2s−3 does not decompose into s star-forests is valid also for s = 4.

Theorem 4.6. If s ≥ 1, then R∆(P4; s) ≥ s + 1, with equality when s ≤ 4. If s ≥ 4, then

R∆(P4; s) ≤ 2s − 3.

Proof. If R∆(P4; s) ≤ s, then among the graphs with maximum degree s whose s-edge-

colorings all have a monochromatic copy of P4, choose H with fewest vertices. For v ∈ V (H),

there is an s-edge-coloring f of H−v having no monochromatic copy of P4. Since ∆(H) ≤ s,

each neighbor w of v in H has degree at most s− 1 in H − v, and hence some color does not

yet appear at w. Extend f to H by choosing such a color for the edge vw. All monochromatic

subgraphs containing v are stars, and without v there is no monochromatic copy of P4, so

H in fact does not force P4.

The general upper bound is immediate from Lemma 4.5 when s ≥ 4. Since the star-

arboricity of K2s−3,2s−3 is s+1, every s-edge-coloring of K2s−3,2s−3 fails to decompose it into

star-forests and hence has a monochromatic P4.

The upper bound s + 1 is trivial for s = 1, since P4 ⊆ K2,2. For s = 2, a 2-edge-coloring

of K3,3 has five edges in some color. A bipartite graph avoiding P4 is a forest of stars, but

the largest forest of stars in K3,3 has four edges.

For s = 3, consider a 3-edge-coloring of K4,4. There are 16 edges, so some color (say

red) is used on at least six edges. A forest of stars with six edges on eight vertices has only

two components and hence must be 2K1,3. Now the subgraph in the remaining two colors

contains K3,3, which forces P4 as shown above. ¤

Lemma 4.5 states that K2s−4,2s−4 has an s-edge-coloring with no monochromatic P4 (the

proof is an explicit construction of such a coloring for K2s−2,2s−4). That is, the s-color

bipartite Ramsey number of P4 is 2s − 3. Although we proved only s + 1 as a general lower

bound, it may be that equality holds in R∆(P4; s) ≤ 2s − 3 for s ≥ 4.

Problem 4.7. Determine R∆(P4; s).

Finally, we return to the s-color setting to show that H
s→ Pm for almost every graph

with maximum degree at most 2s. Let [n] = {1, . . . , n}.
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Theorem 4.8. Fix m, s ∈ N. Let Gn be the family of graphs with vertex set [n] and maximum

degree at most 2s. With Fn = {H ∈ Gn : H
s

9 Pm}, we have limn→∞
|Fn|
|Gn| = 0.

Proof. We first obtain a lower bound on |Gn|. For each 2s-tuple (M1, . . . ,M2s) of perfect

matchings on [n], form a graph H by letting E(H) =
⋃

Mi, and give each edge uv the

color {j : uv ∈ Mj}. The number of ways to do this is z2s, where z is the number of

perfect matchings on [n]. Since z =
∏n/2

j=1(2j − 1) = n!
2n/2(n/2)!

, Stirling’s Formula yields

z ∼
√

2
(

n
e

)n/2
. Dropping the

√
2, we observe that z2s > esn ln(n/e) for sufficiently large n.

The resulting structures consist of a graph in Gn with each edge colored by a subset of [2s],

and there are at most ns edges. Hence

|Gn| >
esn ln(n/e)

4s2n
≥ esn ln(n/e)−(s2 ln 4)n ≥ esn ln n−αn,

where α is a constant.

Now we obtain an upper bound on |Fn|. Let c be the maximum number of vertices in

a graph with maximum degree at most 2s and diameter less than m − 1. For each graph

H ∈ Fn, some s-edge-coloring of H witnesses H
s

9 Pm. Every slice in this coloring has at

most c vertices, since otherwise there is a monochromatic Pm. With H we associate this

edge-coloring as a code; it is a decomposition of H into spanning subgraphs (H1, . . . , Hs)

such that E(Hi) is the set of edges with color i. As we have noted, each component of each

Hi has at most c vertices. Also, distinct graphs in Fn have distinct codes.

We bound |Fn| by bounding the number of codes that can be formed. Let Q be the set

of all graphs having vertex set [n], maximum degree at most 2s, and components with at

most c vertices. We have |Fn| ≤ |Q|s.
We bound |Q| by building such a graph H ′ in three steps. First we specify a composition

of n to record the numbers of vertices in the components of H ′. That is, we specify positive

integers n1, . . . , nk with sum n such that ni is the number of vertices in the component of

H ′ containing the least vertex of [n] that is not in the earlier-indexed components. It is well

known that there are 2n−1 compositions of n. We use only those whose parts are at most c,

so there are at least n/c parts.

Next we record the distribution of vertices to components. For a graph with k compo-

nents, we form a word of length n − k from the characters in [k]. For i from 1 to k, there

remain Ni − (k − i + 1) characters in the word, where Ni =
∑

j<i ni. The vertices in the

ith component are the least vertex not yet distributed plus the ni − 1 vertices among the

remainder whose relative position in the remaining word contains the character i. We only

use words such that each character appears fewer than c times, but in any case there are at

most nn−n/c such words, totalled over all choices of k. We write the bound as e(1−1/c)n ln n.

Finally, we record adjacencies within components. For each vertex v, we list its neighbors

by recording a 2s-tuple (u1, . . . , u2s), where each uj is a neighbor of v or is a dummy symbol
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0. Many 2s-tuples designate the same set of neighbors, but in any case there are at most c2s

possible 2s-tuples for each vertex once the vertices have been distributed to components.

Multiplying all choices for the three steps, we have

|Q| ≤ 2n−1 · e(1−1/c)n ln n · c2sn ≤ e(n−1) ln 2+(1−1/c)n ln n+2sn ln c.

Now |Fn| ≤ e(1−1/c)sn ln n+βn, where β is a constant. Thus |Fn|
|Gn| ≤ e−(s/c)n ln n+(α+β)n → 0. ¤

5 Cycles

Since C3 = K3, the value of R∆(C3; s) follows from the result of Burr, Erdős, and Lovász [6]

that Rχ(G; s) = R(Hom(G); s), where Hom(G) is the family of homomorphic images of G.

If H
s→ G, then χ(H) ≤ ∆(H) + 1, so R∆(G; s) ≥ Rχ(G; s) − 1. Since every homomorphic

image of Kn contains Kn, it follows that Rχ(Kn; s) = R(Kn; s), and hence R∆(Kn; s) ≥
R(Kn; s) − 1. Since KR(Kn;s)

s→ Kn, equality holds. In particular, R∆(C3; 2) = 5 and

R∆(C3; 3) = 16.

It appears that R∆(Cn; s) behaves quite differently for odd and even n. The following

Lemma is well known; Harary, Hsu, and Miller [16] noted the special case k = 2.

Lemma 5.1. If χ(H) ≤ ks, then H decomposes into s graphs that are k-colorable.

Proof. In a proper coloring f of H, encode the colors as k-ary s-tuples. Assign the edges of

H to subgraphs H1, . . . , Hs by putting uv in some Hi such that the colors of u and v differ

in coordinate i. Each Hi is now properly colored by the values in the ith coordinate of f .¤

Proposition 5.2. If s ≥ 2 and k ≥ 1, then R∆(C2k+1; s) ≥ 2s + 1.

Proof. If 2 < ∆(H) ≤ 2s and H does not contain K2s+1, then H is 2s-colorable (using

Brooks’ Theorem when ∆(H) = 2s). Hence H decomposes into s bipartite subgraphs, by

Lemma 5.1. Therefore, H
s

9 C2k+1.

It remains to consider H = K2s+1. For s = 2, the edges of K5 can be 2-colored to avoid

any monochromatic fixed odd cycle. For s > 2, we proceed by induction on s. Partition the

vertex set of K2s+1 into two cliques, one of size 2s−1 + 1 and one of size 2s−1. Color all edges

between the cliques red. Use the other s − 1 colors to color the edges within the cliques

inductively while avoiding C2k+1. ¤
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A result in bipartite Ramsey theory combines with Proposition 5.2 to show a qualita-

tive difference between C4 and odd cycles. Carnielli and Monte Carmelo [9] showed that

lims→∞
B(C4;s)

s2 = 1, where B(G; s) = min{d : Kd,d
s→ G}. Thus B(C4; s) grows quadratically

in s. Since R∆(G; s) ≤ B(G; s), it follows that R∆(C4; s) grows at most quadratically in s.

In contrast, Theorem 5.2 shows that the s-color degree Ramsey number of any odd cycle

grows at least exponentially in s.

Lower bounds for even cycles are weaker. The technique involving chromatic numbers

does not help, because large complete bipartite graphs are 2-chromatic but force long even

cycles, by the bipartite Ramsey Theorem. The easiest way to avoid monochromatic long

even cycles in a decomposition is to avoid all cycles. The arboricity of a graph G, denoted

Υ(G), is the minimum number of forests in a decomposition of G.

Proposition 5.3. If k ≥ 1, then R∆(C2k; s) ≥ 2s.

Proof. Let G be a graph with ∆(G) ≤ 2s − 1. By a famous result of Nash-Williams [20],

Υ(G) = max
H⊆G

⌈ |E(H)|
|V (H)| − 1

⌉

≤ max
H⊆G

⌈ 1
2
(2s − 1) |V (H)|
|V (H)| − 1

⌉

≤ s

so G decomposes into s forests. The resulting s-edge-coloring yields R∆(C2k; s) ≥ 2s. ¤

For s = 2, we have R∆(C4; s) ≥ 4. Beineke and Schwenk [7] showed that K5,5 → C4,

so R∆(C4; 2) ≤ 5. We will show that equality holds. It suffices to prove R∆(C4; 2) > 4.

We will prove the stronger statement that for any graph G with ∆(G) ≤ 4, some 2-edge-

coloring of G avoids both C3 and C4. We will reach a contradiction by studying a smallest

counterexample G. We show that such a graph G cannot contain various induced subgraphs,

ultimately showing that G contains no triangle and no induced subgraph containing a 4-cycle.

Before proceeding, we need a lemma. We use H · e to denote the graph obtained from a

graph H by contracting edge e.

Lemma 5.4 (Contraction Lemma). Let H be a graph with ∆(H) ≤ 4. Let uv be an edge of

H in no triangle, such that d(u) + d(v) ≤ 6. If H · uv has a 2-edge-coloring avoiding C3 and

C4, then choosing either color for uv yields a 2-edge-coloring of H that avoids C3 and C4.

Proof. We need only consider monochromatic triangles and 4-cycles through uv. There are

none of the former, since uv lies on no triangles. With either color on uv, there are none of

the latter, since they would contract to monochromatic triangles in H · uv. ¤

The subgraph of G induced by a vertex set S is denoted G[S].

21



Theorem 5.5. R∆(C4; 2) = 5.

Proof. As mentioned earlier, it suffices to prove that every graph with maximum degree at

most 4 has a 2-edge-coloring that avoids both C3 and C4. Let G be a smallest counterexample.

We reach a contradiction by excluding various induced subgraphs from G.

In Figs. 2–6, the colors for the edges are solid and bold; dashed edges may have either

of these colors. Vertices joined by dotted lines are nonadjacent. Every graph with fewer

vertices than G has a solid/bold edge-coloring with no monochromatic C3 or C4; call this a

good coloring. Often we will obtain a good coloring of G by “extending” a good coloring of

an induced subgraph G − S or a graph H that is not a subgraph of G; in the latter case,

edges of H that are not in G are dropped. The proof of validity of the extension is always

that every monochromatic cycle in the resulting edge-coloring of G is at least as long as some

monochromatic cycle in the good coloring of the smaller graph, which is easily checked.

Step 1: G is K4-free. Let S induce K4. Extend a good coloring of G−S by decomposing

G[S] into a solid P4 and a bold P4 and giving the edge leaving S at each vertex (if such an

edge exists) the color of the P4 having it as a leaf (see Fig. 2).

u

v

w

x

v

x y

Figure 2: Left: G is K4-free. Right: G is 4-regular.

Step 2: G is 4-regular. If d(v) ≤ 2, then a good coloring of G − v extends by using each

color on at most one edge at v. If d(v) = 3, then v has nonadjacent neighbors x and y, since

G is K4-free. Obtain H by adding xy to G − v. Extend a good coloring of H by giving vx

and vy the color of xy in H and giving the third edge at v the opposite color (see Fig. 2).

Step 3: G is K1,2,2-free. If G contains K1,2,2 with vertex set S, then G[S] = K1,2,2, since

G is K4-free. Extend a good coloring of G − S by decomposing G[S] into two copies of P5

and giving to each edge leaving S the color of the P5 ending there (see Fig. 3).

Step 4: G is K−
4 -free, where K−

4 is the graph obtained from K4 by deleting one edge. Such

a subgraph must be induced, since G is K4-free; let S be a vertex set such that G[S] = K−
4 .

Let x and v be the nonadjacent vertices in S, with {u,w} = S − {x, y}.
If u and v have no common neighbors outside S, and w and x have no common neighbors

outside S (see Fig. 3 center), then let H = (G · uv) · wx, and let e be the edge that G[S]
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w

v

y
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w zx

Figure 3: Left: G is K1,2,2-free. Center, Right: G is K−
4 -free.

contracts into. Extend a good coloring of H by giving the path through x, u, w, v the same

color as e and giving the edges uv and wx the opposite color.

If neither reduction of this type is available, then we may assume by symmetry (and

maximum degree 4) that u and v have a common neighbor y, and v and w have a common

neighbor z (see Fig. 3 right). Let S = {u, v, w, x, y, z}. The graph G[S] contains no additional

edges, since G is K1,2,2-free. Extend a good coloring of G − {u, v, w} by using one color on

{yu, uw,wx, vz} and the opposite color on the rest. Note that each monochromatic path in

G[S] joining two vertices of {x, y, z} has length at least 3.

Step 5: G is C3-free. Suppose that G[S] = C3, where S = {w, x, y}. Since G is K−
4 -free,

no two vertices of S have another common neighbor. Let u and v be the neighbors of w

outside S. We consider two cases, depending on whether uv ∈ E(G).

w

x

y

u

v

w

x

y

u

v

Figure 4: G is triangle-free.

If uv ∈ E(G), then let H = (G − w) · xy. Extend a good coloring of H by giving xy the

opposite color from uv (valid by the Contraction Lemma), then giving wx and wy the color

of uv and wu and wv the color of xy (see Fig. 4 left). Monochromatic cycles through x,w, y

are long enough for the usual reason; monochromatic cycles through u,w, v are long enough

because u and v have no other common neighbor, since G is K−
4 -free.

If uv /∈ E(G), then let H = (G + uv − w) · xy. Extend a good coloring of H by giving

{uw,wv, xy} the same color as uv and giving wx and wy the opposite color (see Fig. 4 right).

Again the Contraction Lemma allows us to color xy arbitrarily, and for cycles through the
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other edges we have the usual reason.

Step 6: G is K2,3-free. Suppose that G[S] = K2,3; let X and Y be the partite sets of

G[S], with X = {x, y} and Y = {u, v, w}. Since G is C3-free, vertices of S having a common

neighbor outside S must both lie in X or both in Y . We consider cases depending on whether

two vertices of Y have a common neighbor outside S. Let xz and yz′ be the edges leaving

S from X; possibly z = z′.

If u and v have no common neighbor outside S, then let H = (G−X) ·wb, where a and

b are the neighbors of w outside S. Extend a good coloring of H by giving {ux, vx, yz′, wb}
the same color as wa and giving the opposite color to the remaining edges incident to X

(see Fig. 5a). The Contraction Lemma allows us to color wb as specified, and then all

monochromatic cycles containing an edge incident to X must pass through u and v; these

are long enough because u and v have no common neighbor outside S. The possibility of

z = z′ is irrelevant in this case.

y

x

w

v

u

y

x

z

z′

w

v

u

z

y

x

w

v

u

y

x

w

v

u

(a) (b) (c) (d)

Figure 5: G is K2,3-free.

Therefore, we may assume that every two vertices in Y have a common neighbor. Possibly

some vertex outside S is adjacent to all of Y . If there are two such vertices z and z′, then

let S ′ = S ∪ {z, z′}; now G[S ′] = K4,3. In this case, extend a good coloring of G − S ′ by

decomposing G[S ′] into two copies of P7 and coloring the edges leaving S ′ with the color of

the P7 whose endpoint they are adjacent to (see Fig. 5b). It does not matter whether the

vertices in S ′ − Y have common neighbors outside S ′.

If only one vertex outside S is adjacent to all of Y , call it z and let S ′ = S ∪ {z}; now

G[S ′] = K3,3 (see Fig. 5c). Each vertex of S ′ has one neighbor outside S ′. Since G is now

K4,3-free, we may assume that no pair in Y except possibly {u,w} and no pair in {x, y, z}
except possibly {x, z} has a common neighbor outside S ′. Now extend a good coloring of
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G − S ′ by making the edges leaving S ′ from Y and the path through u, z, v, x, w bold and

making the edges leaving S ′ from {x, y, z} and the remaining edges of G[S ′] solid.

The final possibility is that each pair in Y has a common neighbor outside S, but no

vertex outside S is adjacent to all of Y . Extend a good coloring of G − S by decomposing

the set of edges incident to S into two copies of K2 +T , where T is the 7-vertex tree obtained

by subdividing each edge of K1,3 (see Fig. 5d).

Step 7: G does not contain C4. Since G is K4-free and K−
4 -free, any 4-cycle is an induced

subgraph. If G[S] = C4 for some S, let the vertices be u, v, w, x in cyclic order. Since G is

C3-free and K2,3-free, no two vertices of S have a common neighbor outside S. Let v′ and

v′′ be the neighbors of v outside S, and let w′ and w′′ be the neighbors of w outside S.

Obtain H from G − {v, w} by adding the edges v′v′′ and w′w′′ and contracting the edge

ux. Note that v′v′′, w′w′′ /∈ E(G), since G is C3-free. By the Contraction Lemma, when

extending a good coloring of H we may give ux whichever color we want. We give vv′ and

vv′′ the color of v′v′′, and we give ww′ and ww′′ the color of w′w′′.

For the remaining edges, we consider two cases. If v′v′′ and w′w′′ have the same color

in H, then give that color to ux and give the opposite color to the rest of G[S] (see Fig. 6

left). If v′v′′ and w′w′′ have opposite color in H, then give the color of v′v′′ to vw and xw,

and give the color of w′w′′ to xu and vu (see Fig. 6 right). By the usual arguments, the

resulting monochromatic cycles are long enough, using the fact that no two vertices of S

have a common neighbor outside S.

u v

wx

v′

v′′

w′

w′′

u v

wx

v′

v′′

w′

w′′

Figure 6: G is C4-free.

Since G has neither a C3 nor a C4, every 2-edge-coloring avoids both. ¤
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[12] P. Erdős, R.J. Faudree, C.C. Rousseau, and R.H. Schelp, The size Ramsey number,

Period. Math. Hungar. 9 (1978), 145–161.
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