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Abstract. We study a two-person game played on graphs based on the widely studied
chip-firing game. Players Max and Min alternately place chips on the vertices of a graph.
When a vertex accumulates as many chips as its degree, it fires, sending one chip to each
neighbour; this may in turn cause other vertices to fire. The game ends when vertices
continue firing forever. Min seeks to minimize the number of chips played during the game,
while Max seeks to maximize it. When both players play optimally, the length of the game
is the toppling number of a graph G, and is denoted by t(G).

By considering strategies for both players and investigating the evolution of the game
with differential equations, we provide asymptotic bounds on the toppling number of the
complete graph. In particular, we prove that for sufficiently large n

0.596400n2 < t(Kn) < 0.637152n2.

Using a fractional version of the game, we couple the toppling numbers of complete graphs

and the binomial random graph G(n, p). It is shown that for pn ≥ n2/
√

logn asymptotically
almost surely t(G(n, p)) = (1 + o(1))p t(Kn).

1. Introduction

The game of chip-firing and its variants have been a subject of active investigation in a
variety of disciplines, with applications to topics such as Tutte polynomials, spectral graph
theory, matroids, and statistical mechanics; see [11] for a survey with an extensive bibliogra-
phy. A version of chip-firing played on paths was first employed in [14], and was generalized
to arbitrary graphs in [3]. The so-called Abelian Sandpile model in statistical mechanics [2]
was introduced independently of the chip-firing game. The idea of the game, played on a
grid, is that each vertex is associated with a value corresponding to the slope of the sandpile
at that site. Once the slope reaches a threshold value, the sandpile collapses, spreading to
adjacent vertices. The Abelian Sandpile model is notable as it is a dynamical system that
displays self-organized criticality. Similar processes were studied before; see [5, 7, 12] for
definitions, [1, 13] for results on random graphs, and [9] for a combinatorial game.

We consider the following game-theoretic synthesis of the chip-firing game and the Abelian
Sandpile model played on undirected (finite) graphs. The game we consider was first sug-
gested by Gregory Puleo to a University of Illinois research group in 2011, and was studied
by Cranston and West [8]. We were inspired by Question 2 on [17] on complete graphs. We
first need a few definitions and observations. A configuration of a graph G is a placement of
chips on the vertices of G. We represent a configuration by a function c : V (G) → N ∪ {0},
with c(v) indicating the number of chips on vertex v. Let c be a configuration of a graph
G. We may fire a vertex v provided that c(v) ≥ deg(v); when v is fired, deg(v) chips are
removed from v, and one chip is added to each of its neighbours. We call a configuration
volatile if there is some infinite sequence v1, v2, . . . of vertices that may be fired in order. A
stable configuration is one in which no vertex may be fired; that is, c(v) < deg(v) for all
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v ∈ V (G). Björner, Lovász, and Shor [3] proved that for any configuration of any graph, the
order of vertex firings does not matter. More precisely, if c is a volatile configuration, then
after any list of vertex firings, the resulting configuration remains volatile; if instead c is
not volatile, then any two maximal lists of vertex firings yield the same stable configuration.
Additionally, they showed that every volatile configuration of a graph G has at least |E(G)|
chips, and that every configuration having at least 2 |E(G)| − |V (G)|+ 1 chips is volatile.

The toppling game (see [17]) is a two-player game played on a graph G. Initially, there are
no chips on any vertices. The players, Max and Min, alternate turns; on each turn, a player
adds one chip to a vertex of his or her choosing. The game ends when a volatile configuration
is reached. Max aims to maximize the number of chips played before this point, while Min
aims to minimize it. When Max starts and both players play optimally, the length of the
game on G is the toppling number of G, denoted t(G). A turn of the game is the placement
of a single chip; a round is a pair of consecutive turns, one by each player.

Formally, after each turn of the game, vertices are fired until a stable configuration arises
(unless of course the configuration is volatile, in which case the game is over). However,
to simplify analysis, we occasionally postpone firing vertices until it is convenient, or stop
firing before reaching a stable configuration. As a result, we may end up firing vertices in a
different order than if we had always fired immediately; however, by the result of Björner,
Lovász, and Shor, this does not affect whether or not the current configuration is volatile.

Throughout the paper, we consider only finite, simple, undirected graphs. For background
on graph theory, the reader is directed to [15].

1.1. Main results. We now state our main results and defer the proofs to Sections 2 and
3. We first give asymptotic bounds on the toppling number of complete graphs, which rely
in part on the analysis of certain systems of differential equations.

Theorem 1. For sufficiently large n we have that

0.596400n2 < t(Kn) < 0.637152n2.

The proof of Theorem 1 is established by proving the upper and lower bounds separately.
The main tool is to couple the game with certain auxiliary games (so-called ideal games)
where we have perfect control of the strategies of both Max and Min. We then derive bounds
by simulating the evolution of the ideal games via systems of differential equations (whose
numerical solutions yield the constants in Theorem 1).

It may not be evident a priori that the toppling numbers of complete graphs are related
to those of random graphs, but our second result shows an intimate connection. For given
edge probability p = p(n), we say that a graph property holds asymptotically almost surely
(or a.a.s.) for G(n, p) if it holds with probability tending to 1 as n tends to ∞.

Theorem 2. Let p be such that pn ≥ n2/
√
logn, and let G ∈ G(n, p). A.a.s.

t(G) = (1 + o(1))p t(Kn).

Our approach to proving Theorem 2 is to consider a fractional version of the toppling game,
and to then make precise the connection between the games (see Theorem 11). Analysis of
the fractional toppling game on G(n, p) uses structural and expansion properties of the
random graph (see Lemmas 15 and 17).
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2. Complete Graphs

In this section we establish upper and lower bounds for the toppling number of the complete
graph Kn and so prove Theorem 1. Before proceeding, we establish tools for recognizing
volatile configurations (applicable to all graphs).

Lemma 3. Let c be a configuration of a graph G. If c admits some list of firings such that
every vertex of G fires at least once, then c is volatile.

Proof. To reach a contradiction, suppose that c is not volatile. By the result of Björner,
Lovász, and Shor [3], every maximal list of firings yields the same configuration, so some list of
firings both contains all vertices of G and produces a stable configuration ĉ. Index the vertices
of G as v1, v2, . . . , vn, in order of their final appearance in this firing list. Following its last
firing, vertex v1 received at least one chip from each of its neighbours; hence ĉ(v1) ≥ deg(v1),
contradicting stability of ĉ. �

In some circumstances it is convenient to compare a given configuration with one that is
known to be volatile. For configurations c1 and c2 of a graph G, we say that c1 dominates
c2 provided that c1(v) ≥ c2(v) for all vertices v.

Lemma 4. Let c1 and c2 be configurations of a graph G with c1 dominating c2. If c2 is
volatile, then so is c1.

Proof. Let v be a vertex of G for which c2(v) ≥ deg(v), that is, v may be fired under c2 (and
hence also under c1). Firing v under c1 and under c2 yields new configurations c′1 and c′2,
respectively, such that c′1 dominates c′2. We may repeat this process indefinitely. �

Note also that if c1 is not volatile and c1 dominates c2, then c2 also is not volatile. Next,
we have a useful characterization of volatile configurations of Kn.

Theorem 5. A configuration c of Kn with c(v) ≤ n − 1 for all vertices v is volatile if and
only if there is an ordering v1, v2, . . . , vn of V (Kn) such that c(vi) ≥ n− i for all i ∈ [n].

Proof. Let c be such a configuration and v1, v2, . . . , vn such an ordering. We claim that all n
vertices may be fired in order, from which volatility follows by Lemma 3. Since c(v1) ≥ n−1,
we may fire v1 immediately. Once v1, v2, . . . , vk have been fired for some k < n, vertex vk+1

has received k additional chips. Since it had at least n − k − 1 initially, it now has at least
n− 1, and may be fired. Repeating as necessary establishes the claim.

For the converse, let c be a volatile configuration satisfying c(v) ≤ n − 1 for all vertices
v. Let u1, u2, . . . , un be a legal firing list under c. We claim that the ui must be distinct.
Suppose to the contrary that some vertex v appears twice in the sequence: in particular,
suppose ui = uj = v, with i < j. Just before v is fired for the second time, it has received at
most n−2 chips from earlier firings (since v receives no chip from its first firing). Moreover, v
lost n−1 chips on its first firing. Thus, v has fewer chips at the time of its second firing than
it had initially, contradicting c(v) ≤ n− 1. It follows that the ui are distinct. For 1 ≤ i ≤ n,
vertex ui can be fired after receiving i−1 chips from earlier firings; hence c(ui)+i−1 ≥ n−1,
which simplifies to c(ui) ≥ n− i. Thus, u1, u2, . . . , un is the desired ordering of V (Kn). �

The following result due to Cranston and West [8] will prove useful. Let the Min-start
game be the variant of the toppling game in which Min, not Max, plays first.
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Theorem 6 ([8]). On any graph, if both players play optimally, then the lengths of the
toppling game and Min-start game differ by at most 1.

When playing the toppling game on the complete graph, it simplifies analysis to “sort”
the vertices by the numbers of chips they contain, in nonincreasing order. At all times we let
v1 denote the vertex with the most chips, v2 the vertex with the next most, and so on. We
re-index vertices in this way after every turn of the game. By the symmetry of the complete
graph, we may suppose without loss of generality that, whenever possible, moves are played
so that no re-indexing is necessary. For example, if vi and vi+1 contain equal numbers of
chips, then placing a chip on vi+1 would force a re-indexing of the vertices: the old vi becomes
the new vi+1, and the old vi+1 becomes the new vi. However, we may just as well suppose
that the chip was placed directly on vi to begin with, since this produces an equivalent
configuration. In general, the only moves that force re-indexing are those moves that cause
one or more vertices to fire. It further simplifies matters to represent configurations of Kn

graphically, as follows. Consider a rectangular grid with n columns, with some cells filled and
others empty. Each column represents a vertex, and the number of filled cells in that column
indicates the number of chips on that vertex. A move in the toppling game corresponds to
filling a cell in the grid; cells are filled from bottom to top and (in accordance with vertex
“sorting”) from left to right. For example, cell (5, 8) cannot be filled until cells (4, 8) and
(5, 7) have both been filled. When cell (1, n− 1) is filled, vertex v1 fires, and sends one chip
to each other vertex in the graph, after which vertices are re-indexed.

By Corollary 5, the game ends once we reach a configuration c with c(vi) ≥ n − i for
all i ∈ [n]. The set of cells that must be filled to produce a volatile configuration roughly
corresponds to a triangle in the grid, which we refer to as the critical triangle. We refer to
chips placed within the critical triangle as in-chips and those placed outside as out-chips.
Since the game ends once

(

n
2

)

in-chips have been played, the length of the game is completely
determined by the number of out-chips played. Thus, Max aims to force many out-chips to
be played, while Min aims to prevent this.

In the proof of Theorem 1, we use the observation that firing vertices does not change
the numbers of in-chips and out-chips. When only a single vertex is fired, this is easy to
see: firing v1 has the effect of first emptying all cells in the first column, next shifting all
filled cells up one unit and left one unit, and finally filling cells (1, 1), (2, 1), . . . , (n − 1, 1);

(a) the critical triangle (b) after firing
(in-chips are shaded)

Figure 1. Firing a single vertex.
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see Figure 1. However, when this first firing itself induces more firings, the situation is more
complicated.

Lemma 7. Let c be a configuration of Kn such that c(v1) = n−1 and c(vi) ≤ n−2 for i ≥ 2.
If c is not volatile, then the stable configuration corresponding to c has the same number of
in-chips as c.

Proof. Suppose c is not volatile, and let k be the number of firings needed to produce a stable
configuration. After each firing, we re-index vertices as needed. By the result of Björner,
Lovász, and Shor [3] we may suppose that we only ever fire v1. For i ≥ 1, we claim that
after i firings, the following three properties hold:

(1) Each vertex has at most n− 2 + i chips,
(2) The vertex v1 has at most n chips more than vn, and
(3) The current configuration has the same number of in-chips as c.

When i = k, property (3) is precisely the desired claim. We use induction on i. When i = 1,
property (1) is clear, (2) follows immediately from (1), and (3) follows from the observation
preceding the proof. Suppose now that all three properties hold after i firings, and that v1 is
ready to fire. When we fire v1, each vertex gains at most one chip, so each vertex has at most
n− 2 + i+ 1 chips; hence (1) still holds. Moreover, vn gains one chip, while v1 loses n− 1;
hence, property (2) ensures that, after re-indexing, the old v1 becomes the new vn (and the
old v2 becomes the new v1). Since the old v2 had at most as many chips as the old v1, and the
former gained one chip while the latter lost n− 1, property (2) still holds. For property (3),
suppose that, before the firing, v1 had n− 1+ j chips. Since the old v1 becomes the new vn,
the graphical effect of the firing is easily described: all cells in the first column are emptied,
all remaining cells are shifted up one unit and left one unit, cells (1, 1), (2, 1), . . . , (n− 1, 1)
are filled, and cells (n, 1), (n, 2), . . . , (n, j) are filled. Emptying the first column reduces the
number of in-chips by n − 1, shifting cells up and to the left does not change the number
of in-chips, filling cells in the first row increases the number of in-chips by n− 1, and filling
cells in the last column again does not change the number of in-chips. Hence property (3)
still holds. �

Before continuing, we outline several possible strategies for Max and Min.

(1) The “row strategy” for Max: on each turn, Max fills the leftmost empty cell in
the bottommost incomplete row. This has the effect of filling the rows of the grid
from left to right, bottom to top.

(2) The “triangle strategy” for Min: Min divides the grid into several “layers”: layer
i consists of those cells whose coordinates sum to i+ 1. (Note that layers 1 through
n− 1 together comprise the critical triangle.) On each turn, Min fills the rightmost
empty cell in the least-indexed incomplete layer. This has the effect of filling the
layers of the critical triangle in order, from right to left.

(3) The “square strategy” for Min: this strategy is used only as a response to the row
strategy for Max. Let row k be the bottommost incomplete row. For a nonnegative
integer i, let

Si = {(1, k + 1), (2, k + 1), . . . , (i, k + 1), (1, k + 2), . . . , (i, k + 2), . . . , (i, k + i)};
graphically, Si is the set of cells in the square of side length i with lower-left corner
(1, k + 1). Let s be the maximum integer such that all in-chips within Ss have been
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played; we refer to Ss as “the square”. On each turn, Min aims to expand the square
by adding another in-chip to Ss+1. (When Max completes a row, k increases and the
square shifts upward; when this happens, the square temporarily shrinks, until Min
can refill the top row.)

We use differential equations to analyze these strategies. Consider the system of differential
equations

(1)

{

y′(x) = 1
1−z(x)

z′(x) = 1
z(x)

− 1
1−z(x)

,

with initial conditions y(0) = z(0) = 0. This system arises naturally from the process
analyzed in the proof of the next lemma. In particular, it will follow that y(x) + z(x) is an
increasing function of x. Let x+ denote the value of x for which y(x)+z(x) = 1. No (simple)
closed formula is known for x+; however, we would like to point out that it should be possible
to represent it using the Lambert W (x) function, which is defined by appropriate solution
of yey = x and is sometimes called a “splendid closed formula” [6]. On the other hand, it
is straightforward to solve the system of differential equations numerically and derive the
following upper bound:

x+ < 0.318576.

We also, independently, verified this numerical value by performing a simulation for large
values of n. Both the Maple worksheet and computer program used can be downloaded
from [16].

Similarly, for the system of equations

(2)

{

y′1(x) =
1

1−z1(x)

z′1(x) =
1

2z1(x)
− 1

2(1−z1(x))
,

with initial conditions y1(0) = z1(0) = 0, we define x̄ to be the value of x for which y1(x) +
2z1(x) = 1. Numerical solution shows that x̄ ≈ 0.204309. Finally, consider the system

(3)

{

y′2(x) =
1

1−z2(x)

z′2(x) =
1

2(1−y2(x)−z2(x))
− 1

2(1−z2(x))
,

with initial conditions y2(x̄) = y1(x̄) and z2(x̄) = z1(x̄). Let x− denote the value of x for
which y2(x) + z2(x) = 1. As before, no closed formula is known for x−, but we have the
following bound:

x− > 0.298200.

Now we are ready to analyze the processes that arise under certain choices of strategy.

Lemma 8. Consider the game on Kn.

(i) If Min uses the triangle strategy and Max uses the row strategy, then the game lasts
for (1 + o(1))x+n

2 rounds.
(ii) If Min uses the square strategy and Max uses the row strategy, then the game lasts

for (1 + o(1))x−n
2 rounds.

Proof. The approach used to determine the asymptotic behaviour of the processes involved
is straightforward, but the details are tedious. Therefore, we outline the proof only.
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We focus on part (i) first. We partition the game into phases; a given phase ends once
Max finishes filling a row. For example, the first phase lasts n − O(1) rounds, and ends
when Max fills the last cell in the first row (at which point Min is playing chips in layer√
2n + O(1)). For a given round t, let f(t) be the first incomplete layer and let g(t) be the

first incomplete row. To better study the process, we scale the timeline by introducing the
function x = x(t) = t/n2. Moreover, we define y(x) = g(xn2)/n and z(x) = f(xn2)/n−y(x).
Suppose that at the beginning of some phase, the current configuration is described by y(x)
and z(x)—see Figure 2(a).

y(x)

z(x)

1-z(x)

y(x)

z(x)

1-z(x)

y(x)

z(x)

1-z(x)

1-y(x)-z(x)

(a) triangle vs. row strategy (b) square vs. row strategy (c) square vs. row strategy
(the beginning) (the end)

Figure 2. Two extreme strategies yielding lower and upper bounds.

The length of this phase is approximately (1−z(x))n, and during this phase y(x) increases
by 1/n (since g(t) increases by 1). Since our goal is to investigate the asymptotic behaviour of
this function as n→ ∞, we obtain the following differential equation: y′(x) = 1/(1− z(x)).
Similarly, since it takes z(x)n rounds for Min to fill the current layer, during this phase
Min fills, on average, (1 − z(x))/z(x) layers. Hence, z(x) increases (again, on average) by
((1 − z(x))/z(x) − 1)/n (note that the current layer is represented by (y(x) + z(x))n, and
y(x) increases by 1/n). It follows that

z′(x) = ((1− z(x))/z(x) − 1)/(1− z(x)),

so both functions can be modelled by the system of equations presented in (1). The game
ends once the critical triangle has been filled with chips, that is, when y(x) + z(x) = 1. The
proof for this part is finished.

Now we move to part (ii). As before, we partition the game into phases; a given phase
ends once Max finishes filling a row. The notation also does not change: for a given round t,
let f(t) be the side length of the square, and g(t) the first incomplete row. We focus again
on the scaled analogues of f and g, namely, the functions y(x) and z(x). Suppose that at
the beginning of some phase, the current configuration is described by y(x) and z(x)—see
Figure 2(b). The behaviour of the function y(z) is the same as before: the length of this
phase is (1−z(x))n, and during this phase y(x) increases by 1/n. Note that once the number
of rows is increased, the square “shifts up” one row, so Min must stop to fill in the “missing”
cells of the square. It takes z(x)n rounds for Min to do this; the remaining (1 − 2z(x))n
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rounds are spent expanding the square. Hence, during this phase Min increases the side
length of the square by, on average, (1 − 2z(x))/2z(x) (it takes 2z(x)n rounds to increase
the length by 1). We obtain that

z′(x) = ((1− 2z(x))/2z(x))/(1 − z(x)),

so both functions can be modelled by the system of equations presented in (2).
The behaviour of the function z(x) changes once the square intersects the critical triangle,

that is, when y(x) + 2z(x) = 1. In the following phases, Min does not place chips in the
whole square but restricts himself to the in-chips alone. Max continues filling rows as before
(clearly this is a sub-optimal strategy for Max, since it would be more beneficial for him to
play on the square outside the critical triangle)—see Figure 2(c). At the beginning of each
phase, Min fills the “missing” cells of the square, which takes (1 − y(x) − z(x))n rounds.
In the remaining rounds, Min expands the square; it takes 2(1 − y(x) − z(x))n rounds to
increase the side length by 1. It follows that

z′(x) = (y(x)/2(1− y(x)− z(x)))/(1 − z(x)),

which corresponds to the system of equations presented in (3). The game ends once the
critical triangle has been filled, that is, when y(x) + z(x) = 1. The proof is finished. �

We are now ready to establish upper and lower bounds on t(Kn). Recall that considering
the number of chips needed to produce a volatile configuration yields

|E(Kn)| ≤ t(Kn) ≤ 2 |E(Kn)| − |V (Kn)|+ 1;

Equivalently, we have that

(0.5 + o(1))n2 ≤ t(Kn) ≤ (1 + o(1))n2.

We asymptotically improve both bounds; note that Theorem 1 follows immediately from
Theorems 9 and 10.

Theorem 9. Let x+ be the real number defined by the system of differential equations (1).
Then

t(Kn) ≤ (2x+ + o(1))n2 = (4x+ + o(1)) |E(Kn)| < 0.637152n2.

Proof. We show that Min can force the claimed upper bound by using the triangle strategy.
By Lemma 8, it suffices to show that the row strategy for Max is an optimal response to the
triangle strategy.

We consider two games. In the real game, Min uses the triangle strategy, while Max uses
any fixed strategy. In the ideal game, Min uses the triangle strategy and Max uses the row
strategy. We claim that the real game finishes no later than the ideal game. Since it does
not affect the asymptotic length of the game, by Theorem 6 we may suppose Min plays first.

We divide both games into several phases. In either game, for 1 ≤ i ≤ n−1, we let “phase
i” denote the time during which layer i is the first layer that has not yet been completely
filled. Equivalently, this is the period in the game during which Min intends to play in layer
i. By an argument similar to that in Lemma 7, when a vertex is fired, the number of chips
in each layer remains the same. In particular, once a layer has been completely filled, it
remains so even after vertices are fired. Thus, once the game has reached phase i, it can
never return to phase j for any j < i.
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To prove the claim it suffices to show that, for all 1 ≤ k ≤ n − 1, the real game finishes
phase k no later than the ideal game. (Once phase n − 1 ends, the game ends.) In both
games, phase 1 ends with the first turn, so the claim holds when k = 1; we proceed by
induction on k.

In the ideal game, every phase ends on one of Min’s turns; for 1 ≤ k ≤ n − 1, let phase
k end on Min’s tkth turn. Consider the state of the ideal game just after Min’s tkth turn,
and let c denote the number of empty cells in layer k + 1 in the ideal game. At this point,
the grid for the ideal game contains chips in all cells of layers 1 through k, together with the
remainder of the bottommost k− c rows, and perhaps some additional cells in row k+1− c.
Clearly Min (not Max) will fill all remaining empty cells in layer k + 1; hence tk+1 = tk + c.
Now consider the state of the real game after round tk. In total, 2tk chips have been placed.
Since the real game finishes phase k no later than the ideal game, layers 1 through k have
all been filled. Moreover, at least k + 1 − c rows contain additional chips outside the first
k layers. Hence, layer k + 1 in the real game has at most c empty cells. Since Min fills at
least one such cell on each of her subsequent turns, phase k + 1 ends in the real game after
at most c additional moves by Min, for at most tk + c moves in total. The claimed bound
follows. �

Theorem 10. Let x− be the real number defined by the systems of differential equations (2)
and (3). Then

t(Kn) ≥ (2x− + o(1))n2 = (4x− + o(1)) |E(Kn)| > 0.5964n2.

Proof. We give a strategy for Max to force the claimed lower bound. To do this, we again
consider two games, the real game and the ideal game. In the real game, Min uses any fixed
strategy, while Max uses the strategy described below. In the ideal game, Min uses the
square strategy and Max uses the row strategy. By Lemma 8, it suffices to show that the
real game finishes no sooner than the ideal game. We suppose (by Theorem 6) that Min
plays first.

Before presenting Max’s strategy, we introduce some further terminology. At any given
point in the game, we say that a row in the grid is complete if all cells in that row contain
chips. We say that row i is accessible if all cells in rows 1, 2, . . . , i belonging to the critical
triangle contain chips. (That is, all possible in-chips have been played in the first i rows.)
Note that when any row is accessible but not complete, Max may play an out-chip by playing
in the leftmost empty cell in the first such row. Accessible rows are thus desirable for Max,
who aims to play as many out-chips as possible. It is straightforward to see that firing a
vertex increases the number of accessible rows by 1 (and may make some formerly-complete
rows incomplete).

Max plays as follows. On each turn, if possible, he plays an out-chip in an accessible row;
this is possible if and only if some row is both accessible and incomplete. Otherwise, let row
i be the first inaccessible row, and suppose that the first j cells in this row have already been
filled. Let k denote the number of filled cells in column 1. If n − i − j < n − 1 − k, then
Max adds a chip to row i; otherwise, he adds a chip to column 1. (Max’s intent here is to
create a new accessible row either by filling row i directly or by causing vertex v1 to fire; has
quickly as possible; he chooses the more efficient of the two options.)

As in the previous proof, we divide the ideal game into phases. In the ideal game, no
vertices are ever fired (until the final move), so once a row is complete, it remains so for
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the remainder of the game. For i ∈ N, we denote by phase i the period of the game during
which row i is the first incomplete row. In the ideal game, Min never plays an out-chip, so
every phase ends after one of Max’s turns. Let ci denote the total number of in-chips played
during the first i phases of the ideal game, with c0 = 0. In the real game, we define phase i
to be the period during which the total number of in-chips is at least ci−1, but less than ci.

We claim that, for all k, at least
(

k+1
2

)

out-chips are played in accessible rows during

the first k phases of the real game. (Note that
(

k+1
2

)

is precisely the number of out-chips
played during the first k phases of the ideal game.) In particular, if both games last for m
phases, then at least

(

m
2

)

out-chips must be played in the real game and at most
(

m+1
2

)

in the

ideal game; since necessarily m < n, the difference between
(

m
2

)

and
(

m+1
2

)

is asymptotically
insignificant, so the theorem follows. The claim holds trivially when k = 1; we proceed by
induction on k.

Consider the state of the real game at the beginning of phase k. By the induction hypoth-
esis, at least

(

k
2

)

out-chips have been played in accessible rows. Suppose first that there are
at least k accessible rows. We aim to show that by the beginning of phase k + 1, at least
(

k+1
2

)

out-chips will have been played in accessible rows. If at some point during phase k all
accessible rows are complete, then this is clearly the case. Otherwise Max can, on each of
his turns, play an out-chip in an accessible row; hence Max plays at least as many out-chips
during phase k of the real game as during phase k of the ideal game, and the claim again
follows.

Now suppose instead that at most k − 1 rows are accessible at the beginning of phase k
in the real game. By assumption at least

(

k
2

)

out-chips have been played in these rows, so
there must be exactly k − 1 accessible rows, all complete. At this point in the game, let ℓr
denote the number of chips played in column 1 and let rr denote the number of chips played
in row k. Similarly, let ri denote the numbers of chips played in row k at the beginning of
phase k in the ideal game. In both games, exactly ck−1 in-chips have been played and the
first k − 1 rows are complete. Subject to these constraints, min{n − 1 − ℓr, n − k − rr} is
maximized when the remaining in-chips are arranged in a square-like shape, as in the ideal
game; in particular, min{n−1− ℓr , n−k−rr} ≤ n− i−ri. The former quantity is an upper
bound on the number of in-chips Max must play before row k becomes accessible, while the
latter is the number of in-chips Max plays in the entirety of phase k of the ideal game. The
claim now follows. �

3. Random Graphs

We now establish a correspondence between the toppling number of Kn and the toppling
number of the random graph G(n, p), for p tending to zero sufficiently slowly. In particular,

our main result holds whenever pn ≥ n2/
√
logn (although most of the lemmas hold for even

smaller values of p, namely p≫ log n/n). We begin by introducing a variant of the toppling
game that facilitates the connection between the complete graph and the random graph.

Given p ∈ (0, 1), the fractional toppling game on a graph G is played similarly to the
ordinary toppling game, but with different vertex firing rules. In the fractional game, a
vertex v fires once the number of chips on v is at least p deg(v); when v fires, p deg(v) chips
are removed from v, and p chips are added to each neighbour of v. Since p may be any real
number, vertices need not contain whole numbers of chips (although each player still places
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exactly one chip on each turn). When Max plays first and both players play optimally, the
length of the game is denoted by tp(G).

The ordinary toppling game and fractional toppling game are related in a strong sense,
made explicit in the following theorem.

Theorem 11. For every n-vertex graph G, we have that tp(G) = p t(G) +O(n).

Proof. We bound tp(G) both above and below in terms of t(G). For the lower bound we
give a strategy for Max, and for the upper bound we give a strategy for Min. Since these
strategies are quite similar, we present them simultaneously. Denote the players by “A” and
“B” (note that A and B could represent either one of Min or Max). Player A imagines an
instance of the ordinary game on G and uses an optimal strategy in that game to guide his
or her play in the fractional game. To simplify analysis, we postpone all firing until the end
of the game.

For t ∈ N ∪ {0}, let
r(t) = max{s ∈ N ∪ {0} : sp ≤ t} = ⌊t/p⌋ .

We divide the ordinary game into phases; phase t consists of r(t) − r(t − 1) rounds. Thus,
t rounds in the fractional game correspond to roughly t/p rounds in the ordinary game. To
simplify the analysis, we track the number of chips played at each vertex by each player.
For a vertex v, let xAt (v) and x

B
t (v) denote the numbers of chips placed on v by A and B,

respectively, by the end of phase t in the ordinary game. Similarly, let yAt (v) and yBt (v)
denote the numbers of chips placed on v by A and B by the end of round t in the fractional
game. We define the discrepancy at time t for player A by

DA(t) =
∑

v∈V (G)

∣

∣yAt (v)− pxAt (v)
∣

∣ ;

the discrepancy for player B, denoted DB(t), is defined similarly.
Player A’s strategy is as follows. By Theorem 6 we may assume without affecting the

asymptotics that B plays first (in both games), so each round of the fractional game consists
of a move by B followed by a move by A. After B plays in round t of the fractional game,
A imagines r(t) − r(t − 1) moves by B in the ordinary game; he chooses any list of moves
minimizing DB(t). (This can be done without foreknowledge of A’s intervening moves, since
said moves do not affect DB(t).) Player A responds to each imagined move in turn, according
to some optimal strategy for the ordinary game. Finally A plays, in round t of the fractional
game, any move minimizing DA(t).

Suppose the fractional game lasts for k rounds. We claim that DA(k) < 2n+ 3. Suppose
otherwise, and let k0 be the greatest integer such that DA(k0) < 2n+2. Fix ℓ > k0. During
phase ℓ of the ordinary game, A places at most ⌈1/p⌉ chips. Thus, when it comes time for
A to play in the fractional game,

(4)
∑

v∈V (G)

∣

∣yAℓ−1(v)− pxAℓ (v)
∣

∣ ≥ DA(ℓ)− p ⌈1/p⌉ > 2n.

By definition of r(ℓ), we have that
∑

v∈V (G) y
A
ℓ−1(v) = ℓ− 1 and ℓ− 1 <

∑

v∈V (G) px
A
ℓ (v) ≤ ℓ.

Thus,
∑

v∈V (G)

(

yAℓ−1(v)− pxAℓ (v)
)

< 0. This observation, together with (4) and the fact

that there are n terms in the sums, implies that yAℓ−1(v0) − pxAℓ (v0) < −1 for some vertex
v0. Thus, A can, with his next move in the fractional game, reduce the discrepancy by 1

11



(for example by playing on v0). Consequently, over the final k − k0 rounds of the game, the
gross increase in DA is at most p ⌈(k − k0)/p⌉ < k − k0 + 1, while the gross decrease is at
least k − k0. Thus,

DA(k) < 2n+ 2 + (k − k0 + 1)− (k − k0) = 2n+ 3,

as claimed. Similarly, DB(k) < 2n + 3. (In fact the bound can be tightened in this case,
since B’s imagined moves in each phase of the ordinary game can be spread across several
vertices, thus offering greater flexibility in decreasing the discrepancy. However, the stated
bound suffices for our purposes.)

We bound the length of the fractional game by showing that both games must finish at
roughly the same time. Toward this end, we make a quick observation. Let c and cf be
configurations for the ordinary game and fractional game, respectively. If pc(v) ≥ cf (v) for
all vertices v, and cf is volatile for the fractional game, then c is volatile for the ordinary
game; this follows because any vertex that may fire in the fractional game may also fire in the
ordinary game, and firing vertices preserves the needed inequality. Similarly, if cf(v) ≥ pc(v)
for all vertices v, and c is volatile for the ordinary game, then cf is volatile for the fractional
game.

Now suppose that A is in fact Min. The ordinary game lasts for at most t(G) turns, since
Min plays optimally. Since it does not affect the asymptotics, we suppose for convenience
that the ordinary game ends after exactly k phases. At this point, at most p t(G) + O(1)
turns have elapsed in the fractional game. If the fractional game has already ended, then
Min has enforced the desired upper bound on tp(G), and we are done. Otherwise, we
must show that the fractional game does not last “too much” longer. Let c and cf be
the current configurations for the ordinary game and fractional game, respectively; that is,
c(v) = xAk (v) + xBk (v) and cf(v) = yAk (v) + yBk (v) for all vertices v. We have that

∑

v∈V (G)

⌈|pc(v)− cf(v)|⌉ ≤ DA(k) +DB(k) + n ≤ 5n+ 6,

so after at most 5n+6 more rounds in the fractional game, Min can produce a configuration
ĉf such that ĉf(v) ≥ pc(v) for all vertices v. Since c is volatile for the ordinary game, ĉf is
volatile for the fractional game, which establishes the desired upper bound on tp(G).

Suppose instead that player A is Max. Now the ordinary game lasts for at least t(G) turns;
suppose it ends during phase k. If after round k the fractional game has not yet ended, then
it has lasted for at least p t(G)−O(1) turns, as desired. Suppose instead that the fractional
game ends during round k0, where k0 < k. Let c and cf be the corresponding configurations
for the ordinary game and fractional game, respectively; that is, c(v) = xAk0(v) + xBk0(v) and

cf(v) = yAk0(v) + yBk0(v) for all vertices v. Now
∑

v∈V (G)

⌈|cf(v)− pc(v)|⌉ ≤ DA(k0) +DB(k0) + n ≤ 5n+ 6,

so after at most (5n+6)/pmore rounds in the ordinary game, Min can produce a configuration
ĉ such that pĉ(v) ≥ cf(v) for all vertices v. Since cf is volatile for the fractional game, ĉ
is volatile for the ordinary game. This implies t(G) ≤ 2k0/p + 2(5n + 6)/p, so p t(G) ≤
2k0 +O(n) = tp(G) +O(n), as claimed. �

As a special case of Theorem 11, we obtain the following important corollary.
12



Corollary 12. If p≫ 1/n, then tp(Kn) = (1 + o(1))p t(Kn) = Θ(pn2).

We now turn to the toppling game on random graphs. The central idea behind our main
result is that the toppling game on G(n, p) behaves quite similarly to the fractional game on
Kn (so long as p tends to zero slowly enough). The formal proof of this fact is quite lengthy,
so we present several lemmas before attacking the main result. We begin by describing a
useful change to the rules of the fractional game that does not asymptotically affect the
length of the game on Kn.

Lemma 13. Fix any function ω tending to infinity with n. Consider the fractional game on
Kn. If we forbid either player from placing more than ωpn chips on the same vertex, then
the length of the game (assuming both players play optimally) is (1 + o(1)) tp(Kn).

Proof. We bound the length of the game above and below. For the upper bound it suffices
to restrict only Min, since restricting Max cannot increase the length of the game. Likewise,
for the lower bound it suffices to restrict only Max. Both arguments proceed similarly.

Denote the players by “A” and “B”. We consider two games: the ordinary game, in which
there are no restrictions on moves, and the restricted game, in which A can play no more
than ωpn chips on any one vertex. (When restricting A, we consider only chips placed by
A, and ignore chips placed by B.) The restricted game is, in a sense, the “real” game, while
the ordinary game is “imagined” by A as a tool to guide his play in the restricted game. We
give a strategy for A to ensure that the length of the restricted game is asymptotically the
same as that of the ordinary game. To simplify analysis, we postpone all vertex firing until
the end of the game.

Player A plays as follows. At the beginning of the game, A chooses an arbitrary indexing
v1, v2, . . . , vn of the vertices of Kn. Whenever B plays in the restricted game, A imagines
that B played identically in the ordinary game. On A’s turn, he first chooses his move in the
ordinary game according to some optimal strategy for that game; suppose he chose to play
at vertex v. If A has placed fewer than ⌊(ω − 1)pn⌋ chips on v in the restricted game, then
A places a chip on v. Otherwise, A places a chip on the least-indexed vertex on which he has
not already placed ⌊(ω − 1)pn⌋ chips. (There must be some such vertex given sufficiently
large n, since A places fewer than pn2 chips before the game ends, and for large n we have
that n ⌊(ω − 1)pn⌋ ≥ pn2.)

Suppose now that A is Min. Min plays optimally in the ordinary game, so it finishes
after at most tp(Kn) turns; the restricted game may last longer. Once the ordinary game
finishes, let c and cr be configurations of the ordinary and restricted games, respectively.
Let S = {v ∈ V (G) : c(v) 6= cr(v)}. Each vertex in S, except perhaps for one, contains

⌊(ω − 1)pn⌋ chips in the restricted game; hence |S| ≤ pn2

⌊(ω−1)pn⌋ = o(n). Allow the restricted

game to continue for another |S| pn rounds; on these extra turns, Min places another pn
chips on each vertex of S. Let ĉr be the resulting configuration of the restricted game.

We claim ĉr is volatile. Let u1, u2, . . . be an infinite firing sequence for c; we construct an
analogous firing sequence for ĉr. At all times we maintain the invariants that

∑

v∈S
(ĉr(v)− c(v)) ≥ pn |S|

and that ĉr(v) ≥ c(v) for v 6∈ S. Both invariants clearly hold before any vertices are fired, and
are maintained under the firing (in both games) of any vertex not in S. Suppose we fire, in
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the original game, some vertex v in S. If v may be fired in the restricted game, then doing so
preserves both invariants. Otherwise, since

∑

v∈S(ĉr(v)−c(v)) ≥ pn |S|, there is some vertex
v′ in S such that ĉr(v

′)− c(v′) ≥ pn. Since ĉr(v
′) ≥ p(n− 1) we may fire v′ in the restricted

game, and doing so maintains both invariants. We may repeat the process indefinitely, hence
ĉr is volatile. Consequently, the total number of chips played in the restricted game is at
most tp(Kn) + 2pn |S| = tp(Kn) + o(pn2) = (1 + o(1)) tp(Kn), as desired.

Now suppose instead that A is Max. By Max’s strategy, the ordinary game lasts for at
least tp(Kn) turns, but the restricted game may finish earlier. By an argument similar to
that in the preceding paragraph, once the restricted game ends, Min can reach a volatile
configuration for the ordinary game after another o(pn2) turns. Letting tr denote the length
of the restricted game, we have that tp(Kn) ≤ tr + o(pn2), so tr ≥ tp(Kn) − o(pn2) =
(1 + o(1)) tp(Kn), as claimed. �

We are now ready to tackle random graphs. We begin by establishing some properties of
G(n, p). The following well-known result, known as the Chernoff Bound, is very useful (see
for example Theorem 2.8 [10]).

Theorem 14 ([10]). Let X be a random variable that can be expressed as a sum X =
∑n

i=1Xi

of independent random indicator variables Xi, where Xi ∈ Be(pi) (the pi need not be equal).
For t ≥ 0,

Pr [X ≥ E [X ] + t] ≤ exp

(

− t2

2(E [X ] + t/3)

)

and

Pr [X ≤ E [X ]− t] ≤ exp

(

− t2

2E [X ]

)

.

In particular, if ε ≤ 3/2, then

Pr [|X − E [X ] | ≥ εE [X ]] ≤ 2 exp

(

−ε
2
E [X ]

3

)

.

We also need the following well-known observation (see e.g. [4] Lemma 2.2). For a given
vertex v and integer i, let N(v, i) denote the set of vertices at distance i from v.

Lemma 15. Let d = p(n− 1) and suppose that logn ≪ d ≪ n. For G ∈ G(n, p), a.a.s. for
every v ∈ V (G) and i ∈ N such that di = o(n) we have that

|N(v, i)| = (1 + o(1))di.

In particular, a.a.s. for every v ∈ V (G), we have that deg(v) = (1 + o(1))d.

Our next lemma is an analogue of Lemma 13 for the ordinary game on G(n, p).

Lemma 16. Fix any function ω tending to ∞ with n. Consider the toppling game on
G ∈ G(n, p), where p≫ logn/n. If we forbid either or both of the players from placing more
than ωpn chips on the same vertex, then a.a.s. the length of the game (assuming both players
play optimally) is (1 + o(1)) t(G).

Proof. Since we aim to show that the specified bound on t(G) holds a.a.s., we may assume
that the property stated in Lemma 15 holds deterministically for G.

14



As in the proof of Lemma 13, we bound the length of the game above and below; for the
upper bound it suffices to restrict only Min, and for the lower bound it suffices to restrict
only Max. The two players’ strategies are very similar.

Denote the players by “A” and “B”. We consider two games: the restricted game, in which
A can play no more than ωpn chips on any one vertex, and the ordinary game, in which
there are no restrictions on moves. Player A uses the ordinary game to guide his play in the
restricted game. We give a strategy for A to ensure that the length of the restricted game is
asymptotically the same as that of the real game. To simplify analysis, we postpone firing
vertices until it is convenient.

When B makes a move in the ordinary game, A simply imagines that B made the same
move in the restricted game. When A himself plays, more care is needed. Call a vertex
saturated if A has already placed (ω − 3)pn chips there in the restricted game. Player A
chooses his move for the ordinary game according to some optimal strategy for that game;
suppose he plays at vertex v. If v is not saturated, then A plays at v in the restricted game
as well. If in fact v is saturated, then A instead attempts to play (in the restricted game)
on some vertex u in N(v). This may require recursion: if u is saturated, then A attempts
to play on some neighbour of u, and so on until he reaches an unsaturated vertex. On
subsequent moves by A at v in the ordinary game, A chooses different neighbours on which
to play in the restricted game, until all neighbours have been used. At this point we fire v in
the ordinary game, which resolves the discrepancy between the two games due to placement
of excess chips at v. Player A handles subsequent moves at v similarly—by playing instead
at each neighbour of v in turn, firing v, and repeating the process.

Suppose A is Min. Since Min plays optimally in the ordinary game, that game finishes
in at most t(G) turns. If at that point the restricted game has already finished, then
Min has enforced the desired upper bound, and we are done. Otherwise, it suffices to
show that Min can cause the restricted game to end in o(pn2) additional rounds, since
t(G) ≥ |E(G)| = Θ(pn2). Let c and cr be the current configurations for the ordinary and
restricted games, respectively. We show that adding o(pn2) chips to cr yields a configuration
that dominates c; since c is volatile, the claim then follows by Lemma 4. However, this is
straightforward. There is only one possible reason for discrepancy between c and cr: for each
saturated vertex v in the restricted game, it may be that Min attempted to play at some,
but not all, neighbours of v. To resolve this discrepancy, it suffices to add, to each such
vertex, deg(v) chips, and then to fire. Since the game lasts for Θ(pn2) turns, the number of
saturated vertices is o(n); by Lemma 15, the number of chips added is thus o(pn2). Moreover,
no saturated vertex v gains more than 2 deg(v) chips during this process, so in total Min
plays no more than (ω − 3)pn+ 2deg(v) chips on v; for sufficiently large n, this is less than
ωpn.

Suppose instead that A is Max. This time, the ordinary game finishes in at least t(G)
turns. If at this point the restricted game has not yet finished, then Max has enforced
the desired lower bound. Suppose instead that the restricted game finishes first. We claim
that once the restricted game ends, Min can cause the ordinary game to end within o(pn2)
additional rounds. Min can do this using a strategy similar to that in the last paragraph: to
each saturated vertex v, add deg(v) chips in the ordinary game, and then fire. This produces
a configuration in the ordinary game that dominates the configuration of the restricted game,
and hence is volatile. The desired lower bound follows. �
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Before proving the main result, we need two technical lemmas about the structure of the
random graph. The first is straightforward but, lacking a suitable reference, we provide a
proof.

Lemma 17. Let d = p(n − 1) and suppose that n2/
√
logn ≤ d ≪ n. Fix G ∈ G(n, p), let

m ∈ N be such that dm = o(n), and let ψ = ψ(n) = n/dm. A.a.s. for every v ∈ V (G) the
following properties hold:

(i) Fix j < m. For every u ∈ N(v, j − 1) ∪N(v, j), we have that

|N(v, j − 1) ∩N(u)| < 1.5
√

logn/(m− j).

(ii) For every u ∈ N(v,m− 1) ∪N(v,m), we have that

|N(v,m− 1) ∩N(u)| = O(logn).

(iii) For every u ∈ V \⋃j≤m−1N(v, j), we have that

|N(v,m) ∩N(u)| =
{

O(d/ψ) if ψ ≤ d/ logn,

O(logn) if ψ > d/ logn.

Proof. Since we aim for a result that holds a.a.s., we may assume that the property stated
in Lemma 15 holds deterministically for G. Fix vertices v and u.

For (i), we perform a breadth-first search from v until the vertices of N(v, j − 1) are
discovered. (However, we do not expose any edges from N(v, j−1) to undiscovered vertices,
nor do we expose any edges joining vertices in N(v, j − 1).) It follows from Lemma 15 that
|N(v, j− 1)| = (1+ o(1))dj−1. For a fixed vertex u, either undiscovered or in N(v, j− 1), let
Xu be a random variable denoting |N(v, j − 1) ∩N(u)|. It is straightforward to see that

Pr [Xu ≥ k] ≤
(|N(v, j − 1)|

k

)

pk

≤ (1 + o(1))k

k!
dk(j−1) d

k

nk

≤ dkj

nk
= o

(

dkj

dkm

)

= o(dk(j−m)).

Taking k = 3 logn
(m−j) log d

yields that

Pr [Xu ≥ k] = o(d−3 logn/ log d) = o(n−3).

Since there are only O(n3) choices for v, u, and j, the claim follows by the Union Bound.

Moreover, since d ≥ n2/
√
logn, we have that k ≤ 1.5

√
log n/(m− j), as desired.

We prove part (ii) similarly. Perform a breadth-first search from v until the vertices of
N(v,m− 1) are discovered (but do not expose any edges from N(v,m− 1) to undiscovered
vertices, nor any edges joining vertices in N(v,m − 1).) It follows from Lemma 15 that
|N(v,m− 1)| = (1+ o(1))dm−1. For a fixed vertex u, either undiscovered or in N(v,m− 1),
let Xu be a random variable denoting |N(v,m− 1) ∩N(u)|. Now

E [Xu] = (1 + o(1))dm−1p = (1 + o(1))
n

dψ
p = (1 + o(1))

1

ψ
= o(1).
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Applying the Chernoff Bound with t = 3 logn (see Theorem 14), we find that Xu = O(logn)
with probability 1− o(n−2). Since there are O(n2) possibilities for v and u, the result holds
by the Union Bound.

Finally, consider part (iii). This time, we stop our breadth-first search once the vertices
of N(v,m) have been discovered. As before, for a fixed vertex u, either undiscovered or in
N(v,m), let Xu be a random variable denoting |N(v,m) ∩ N(u)|. Now Lemma 15 yields
|N(v,m)| = (1 + o(1))dm, so

E [Xu] = (1 + o(1))dmp

= (1 + o(1))
n

ψ
p

= (1 + o(1))
d

ψ
.

If d/ψ = Ω(log n), then it follows from the Chernoff Bound that Xu = O(d/ψ) with prob-
ability 1 − o(n−2). Otherwise, the Chernoff Bound shows only that Xu = O(logn) with
probability 1− o(n−2). Item (iii) now follows by the Union Bound. �

We return now to the toppling game on the random graph.

Lemma 18. Let p be such that pn ≥ n2/
√
logn. Fix G ∈ G(n, p) and let ω = log logn. A.a.s.

for every configuration c of G such that c(v) ≤ 2
√
ωpn for all vertices v, and every legal firing

sequence F = (u1, u2, . . . , un) under c, every vertex of G appears in F only O(pn/ log2 n)
times.

Proof. We may suppose that the property in Lemma 15 holds deterministically for G. Let
d = p(n − 1), let m denote the largest integer such that dm = o(n), and let ψ = n/dm. If
d = Ω(n) then the bound holds easily: each vertex initially has enough chips to fire only
(2 + o(1))

√
ω times, and receives at most n − 1 chips from earlier firings, which is enough

for only a constant number of additional firings. Hence, we may suppose that d = o(n), and
that the properties in Lemma 17 also hold deterministically for G.

Fix a vertex v in G. For 0 ≤ i ≤ m + 1, let Ki denote the number of times vertices in
N(v, i) appear in F , and let K = K0. We aim to show that K = O(pn/ log2 n); suppose to
the contrary that K ≫ pn/ log2 n.

We first claim that Ki ≥
(

∏i
j=1

m−j
2
√
logn

)

diK for 0 ≤ i ≤ m − 1. This is trivially true

when i = 0. Fix i ∈ {1, 2, . . . , m − 1}, and suppose that Ki−1 ≥
(

∏i−1
j=1

m−j
2
√
logn

)

di−1K. By

Lemma 17(i), each vertex in N(v, i−1) has at least (1− o(1))d neighbours in N(v, i). Thus,
with each firing in N(v, i − 1), at least (1 − o(1))d chips are sent to N(v, i). In total, the
firings in N(v, i− 1) send at least (1− o(1))dKi−1 chips to N(v, i).

In order to fuel the firings at N(v, i − 1), some chips must be received from N(v, i). By
Lemma 15, at most (2 + o(1))

√
ωdi chips begin within distance i− 1 of v, so the number of

chips entering N(v, i− 1) from N(v, i) must be at least

(1− o(1))dKi−1 − (2 + o(1))
√
ωdi = (1− o(1))dKi−1,
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since
√
ω =

√
log log n = o(K). By Lemma 17(i) each vertex in N(v, i) has at most

1.5
√
logn/(m− i) neighbours in N(v, i− 1), so we have that

Ki ≥ m− i

1.5
√
logn

(1− o(1))dKi−1

≥
(

i
∏

j=1

m− j

2
√
logn

)

diK.

When i = m, it need no longer be the case that each vertex in N(v,m) has so few
neighbours in N(v,m− 1). Applying Lemma 17(ii) yields

Km ≥ Ω

(

1

log n

)

(1− o(1))dKm−1

= Ω

((

m−1
∏

j=1

m− j

2
√
logn

)

dm

logn
K

)

.

Finally, consider Km+1. Lemmas 15 and 17(ii) and (iii) together imply that every vertex
in N(v,m) has (1 − o(1))d neighbours in N(v,m + 1). By Lemma 17(iii), every vertex in
N(v,m+ 1) has at most O(d logn/ψ) neighbours in N(v,m), so

Km+1 ≥ Ω

(

ψ

d logn

)

(1− o(1))dKm = Ω

(

ψ

d logn
·
(

m−1
∏

j=1

m− j

2
√
logn

)

dm+1

log n
K

)

= Ω

(

n

log2 n

(

m−1
∏

j=1

m− j

2
√
logn

)

K

)

= Ω

(

n

log2 n
K · (m− 1)!

(2
√
log n)m−1

)

≥ Ω

(

n

log2 n
K

(

m− 1

2e
√
logn

)m−1
)

.

Since pn ≥ n2/
√
logn, we have that m ≤ 0.5

√
logn. Moreover, f(x) = (x/(2e

√
logn))x is an

increasing function for x ∈ [1, 0.5
√
log n+ 1]. Consequently,

Km+1 ≥ Ω

(

n

log2 n
K

( √
log n

4e
√
log n

)0.5
√
logn
)

≥ Ω

(

n

log2 n
K

(

1

12

)0.5
√
logn
)

.

By assumption K ≫ pn/ log2 n, so

Km+1 ≫ n · pn

log4 n · 120.5
√
logn

.
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However,

pn ≥ n2/
√
logn

= exp(2
√

log n)

≫ log4 n · 120.5
√
logn,

so Km+1 ≫ n, which is impossible as F has length n. Thus, we have reached a contradiction,
from which it follows that K = O(pn/ log2 n). �

We are almost ready to prove our main result; we need just one more structural lemma
about the random graph.

Lemma 19. Let p be such that pn ≥ n2/
√
logn. Fix G ∈ G(n, p) and let ω = log logn. A.a.s.

for all sets S such that |S| ≤ 2n/ω, we have either
∑

v∈V (G)

|disc(v)| = o(pn) |S| or
∑

v∈V (G)

|disc(v)| = O(n logn),

where disc(v) = |N(v) ∩ S| − p |S|.
Proof. We may assume that the properties in Lemmas 15 and 18 hold deterministically for
G. In particular,

∑

v∈V (G) |disc(v)| ≤
∑

v∈S deg(v) = (1 + o(1))pn |S|, so the claim is trivial

when |S| < log n/p.
Fix a subset S of V (G) with log n/p ≤ |S| ≤ 2n/ω. To establish the claimed bound

on
∑

v∈V (G) |disc(v)|, it suffices to bound
∑

v∈V (G)\S |disc(v)| and
∑

v∈S |disc(v)| separately;
we begin with the former. Let µ = p |S|, and fix v 6∈ S. Since |N(v) ∩ S| is binomially
distributed with expectation µ, the Chernoff Bound yields

Pr

[

|disc(v)| ≥ 1

ω
µ

]

≤ 2 exp

(

− 1

3ω2
µ

)

.

Let E be the event that there are at least 6ω3n/µ vertices v outside S having |disc(v)| ≥ 1
ω
µ.

Since this property is determined independently for all choices of v, we have that

Pr [E] ≤
(

n

6ω3n/µ

)

26ω
3n/µ exp(−2n)

≤ 2n2o(n) exp(−2n) = o(e−n).

Similarly, fix i ∈ {2, 3, . . . , ⌈log2 n⌉}. The Chernoff Bound yields

Pr
[

disc(v) ≥ 2iµ
]

≤ exp

(

− (2i − 1)2µ2

2µ(1 + (2i − 1)/3)

)

≤ exp(−2i−1µ).

Now let Ei be the event that there are at least ki vertices v having disc(v) ≥ 2iµ, where
ki = 3n/(2i−1µ). We have that

Pr [Ei] ≤
(

n

ki

)

exp(−2i−1µki)

≤ 2n2−3n = 2−2n = o(e−n).
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Thus, the probability that at least one of the events E or Ei holds for S is o(logn e−n).
Since there are fewer than 2n choices for S, a.a.s. for all such sets S, neither E nor any of
the Ei hold. But now, for every such set S,

∑

v∈V (G)\S
|disc(s)| ≤ n · 1

ω
µ+

6ω3n

µ
· 4µ+

⌈log2 n⌉
∑

i=1

(

2i+1µki
)

= O
(pn

ω

)

|S|+O(ω3n) +O(n logn)

= o(pn) |S|+O(n logn),

as desired.
Finally, consider

∑

v∈S |disc(v)|. Letting m denote the random variable counting the
number of edges with both endpoints in S, we have that

∑

v∈S
|disc(v)| ≤

∑

v∈S
|N(v) ∩ S|+

∑

v∈S
p |S|

= 2m+ p |S|2 = 2m+ o(pn) |S| .
Hence, it suffices to show that a.a.s. m = o(pn) |S|. The random variable m is binomially

distributed with expectation µ = p
(|S|

2

)

= o(pn) |S|. By the Chernoff Bound, we have that

Pr [m ≥ 2µ] ≤ exp

(

−1

3
µ

)

= o(e−n).

Since there are fewer than 2n choices for S, a.a.s. we have that m ≤ 2µ regardless of choice
of S. �

We are now finally ready to prove our main result on random graphs.

Proof of Theorem 2. Since we aim for a property that holds a.a.s., we may assume that the
properties in Lemmas 15, 18, and 19 hold deterministically for G. Let ω = log log n.

We show that t(G) = (1 + o(1)) tp(Kn), from which the result follows by Theorem 11.
Once again denote the players by “A” and “B”; we give a strategy for player A. We play
two games, the ordinary game on G and the fractional game on Kn. The ordinary game is
the “real” game on which both players play, while the fractional game is “imagined” by A
to guide his strategy for the ordinary game. Except where otherwise specified, we postpone
firing vertices until the end of the game.

Player A plays as follows. On A’s turns, he first plays according to some optimal strategy
for the fractional game, and then makes the same move in the ordinary game. When B plays
in the ordinary game, A simply duplicates this move in the fractional game. Since

√
ω → ∞,

by Lemma 13 we may assume (without affecting the asymptotic length of the game) that A
plays no more than

√
ωpn chips on any one vertex in the fractional game (and hence also

in the ordinary game). Likewise, we may assume by Lemma 16 that B plays no more than√
ωpn chips on any one vertex in the ordinary game (and hence also in the fractional game).

Thus, all vertices have at most 2
√
ωpn chips at all times in both games.

Suppose first that A is Min. We aim to show that t(G) ≤ (1 + o(1))p t(Kn) + o(pn2)
(which suffices since t(Kn) = Θ(n2)). By Lemmas 11 and 13, the fractional game ends after
at most (1 + o(1))p t(Kn) turns. If the ordinary game finishes first, then we are done, so
suppose otherwise. It suffices to show that Min can force the ordinary game to end after
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o(pn2) additional rounds or, equivalently, that the ordinary game can be brought to a volatile
configuration by adding another o(pn2) chips.

Let c and cf denote the configurations of the ordinary and fractional games, respectively.
We would like to fire vertices while maintaining the property that c(v) ≥ cf (v) for all vertices
v. (Initially, we have equality for all vertices.) Since the fractional game has ended, cf is
volatile. Let F = (u1, u2, . . . , un) be a firing sequence of length n for cf (the vi need not be
distinct). For i ≥ 1, define Si = {v : v appears at least i times in S}. Since each vertex ui
gains at most p(n − 1) chips from predecessors in S, we must have cf (v) > (i − 1)p(n− 1)
whenever v ∈ Si. Let k = max{i : Si 6= ∅}. Construct a sequence F ′ by listing all elements
of Sk, followed by all elements of Sk−1, and so on down to S1, with the restriction that when
listing the elements of S1 we do so in order of their final appearances in S. We claim that F ′

is a legal firing sequence for cf : since each chip in Si can fire i−1 times without “assistance”
from earlier vertices, the only potential problems come from the firings in S1, but each vertex
receives at least as many chips before firing as it did under F .

We aim to show that F ′ is also a legal firing sequence in the ordinary game (after adding
o(pn2) more chips). We do this by firing vertices in large groups. With the Si defined
as in the previous paragraph, let ℓ = min{i : |Si| ≥ n/ω}. Let F ∗ be the portion of F ′

consisting of those vertices in Sk, Sk−1, . . . , Sℓ+1. In the fractional game, each vertex has at
most 2

√
ωpn chips under cf , and gains at most p(n − 1) more as F ′ is fired; consequently,

k ≤ (2 + o(1))
√
ω. Thus, |F ∗| ≤ (2 + o(1))

√
ω · n

ω
= o(n). For each i ∈ {1, 2, . . . , ℓ}, we

divide the portion of F ′ corresponding to Si into consecutive blocks with sizes between n/ω
and 2n/ω.

We have thus expressed F ′ in the form (F ∗, F1, . . . , Fm), where |F ∗| = o(n), no vertex
appears more than once in any Fi, and each Fi has size between n/ω and 2n/ω. We aim to
fire each subsequence in both games, possibly after adding a few extra chips in the ordinary
game. At all times we maintain the property that each vertex has at least as many chips
in the ordinary game as in the fractional game. Each time we attempt to fire a vertex v in
the ordinary game, we first add ⌈deg(v)− p(n− 1)⌉ chips to v. This ensures that v loses
exactly p(n − 1) chips in the course of firing; it also guarantees that whenever we may fire
v in the fractional game, we may also fire it in the ordinary game. By Lemma 15, we add
only o(pn2) chips across all n firings.

We first fire all of F ∗. In the fractional game, each vertex gains at most p |F ∗| chips
from these firings. This need not be the case in the ordinary game. To compensate, before
firing any vertices in the ordinary game, we add ⌈p |F ∗|⌉ chips to each vertex; this ensures
that, after firing, each vertex still has at least as many chips in the ordinary game as in the
fractional game. Since |F ∗| = o(n), we only add o(pn2) extra chips.

We next fire the Fi in order. Let Fi = (v1, v2, . . . , vm), and recall from the construction
of Fi that the vj must be distinct. When firing Fi, some vertices may receive more chips
in the fractional game than in the ordinary game. As before, we compensate for this dis-
crepancy before firing. To each vj we add p |Fi| chips, to ensure that vj will have enough
chips to fire when it is reached in the firing sequence; the total number of chips added is
p |Fi|2 = o(pn2/ω). Each vertex v outside Fi receives exactly p |Fi| chips from the firing in
the fractional game, but only |Fi ∩NG(v)| chips in the ordinary game. Thus, to each vertex v
we add max{|Fi ∩NG(v)|−p |Fi| , 0} chips; by Lemma 19, the number of extra chips needed
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is only o(pn2/ω). The number of chips added to compensate for the discrepancy due to each
Fi is o(pn

2/ω), so the total number added throughout the full firing sequence is o(pn2).
Let U be the set of vertices not appearing in F ′. All vertices not in U have been fired

at least once. Since we have fired n vertices, each vertex in U has at least pn chips in the
fractional game, and hence also in the ordinary game. By Lemma 15, we may now add
another o(pn) chips to each vertex in U to ready it for firing. Corollary 3 now implies that
we have reached a volatile configuration, and it follows that t(G) ≤ (1+o(1))p t(Kn)+o(pn

2)
as claimed.

Suppose now that A is Max. We now aim to show that

t(G) ≥ (1 + o(1))p t(Kn)− o(pn2) = (1 + o(1))p t(Kn).

Play both games until the ordinary game ends; By Lemma 16, the ordinary game lasts for at
least (1+ o(1)) t(G) turns. If the fractional game finishes first, then we are done, so suppose
otherwise. It suffices to show that Min can force the fractional game to end after o(pn2)
additional rounds or, equivalently, that the fractional game can be brought to a volatile
configuration by adding another o(pn2) chips. This would imply that (1 + o(1)) tp(Kn) ≤
(1 + o(1)) t(G) + o(pn2) which, by Lemma 11, is equivalent to the desired lower bound on
t(G).

Let c and cf be the current configurations of the ordinary and fractional games, respec-
tively. Initially cf(v) = c(v) for all vertices v; we aim to fire vertices while maintaining
cf(v) ≥ c(v) for all v. During this process we may need to add o(pn2) extra chips to the
fractional game. Let F = (u1, u2, . . . , un) be a legal firing sequence under c. Partition F into
contiguous subsequences F1, F2, . . . , Fk, where each Fi has size between n/ω and 2n/ω, and
k ≤ ω. We show how to fire the Fi, in order, in both games.

Fix i; we aim to fire Fi in both games and re-establish cf(v) ≥ c(v) for all v, while
adding only o(pn2/ω) chips to the fractional game. For sufficiently large n, Lemma 18
ensures that each vertex of G appears at most Cpn/ log2 n times in Fi, for some constant
C. For 1 ≤ j ≤ Cpn/ log2 n, let Sj be the set of vertices appearing at least j times in Fi.
Define discj(v) = |N(v) ∩ Sj | − p |Sj |. When Fi is fired in both games, vertex v receives
∑

j(discj(v) + p |Sj |) chips in the ordinary game, but only
∑

j p |Sj | chips in the fractional

game. To compensate for this discrepancy, before firing Fi, we add max{∑j discj(v), 0}
chips to each vertex v in the fractional game. By Lemma 19, we have that

∑

v

∑

j

disc
j
(v) ≤

∑

j

o(pn) |Sj |+
∑

j

O(n logn)

= o(pn2/ω) +O

(

n log n
Cpn

log2 n

)

= o(pn2/ω).

We must exercise caution when firing, as vertices in Fi may receive chips “sooner” in the
ordinary game than in the fractional game. To compensate for this, to each vertex v appear-
ing in Fi, we add an additional p |Fi| chips; consequently, v receives

∑

j |N(v) ∩ Sj| chips in
the fractional game before any vertices of Fi are fired, which ensures that each vertex in Fi

receives in advance, in the fractional game, all chips it receives from firing Fi in the ordinary
game. Thus, when v may be fired in the ordinary game, it may also be fired in the fractional
game. In total, this costs only O(pn2/ω2) = o(pn2/ω) extra chips. Finally, when a vertex
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is fired in the ordinary game, it may lose o(pn) fewer chips than in the fractional game; we
compensate for this by adding extra chips to each vertex in the fractional game before it is
fired. Again, this requires adding only o(pn2/ω) extra chips in total.

We now fire all Fi in order. For each Fi fired, we add o(pn2/ω) chips to the fractional
game, so in total we add o(pn2) chips. Since we have fired n vertices in the fractional game,
every vertex has either fired or has received pn chips and hence may now fire. Thus, by
Lemma 3, the fractional game has ended. Since we have added only o(pn2) chips to the
fractional game, the desired lower bound on t(G) follows. �

Throughout the section we have assumed that pn ≥ n2/
√
logn. However, this assumption

is needed only to establish Lemma 18 (and is, consequently, used also in Lemma 19). If this
lemma holds under the weaker assumption that p≫ log n/n (and with the weaker conclusion
that every vertex fires only o(pn) times), then the remainder of the proof of Theorem 2 could
be made to work as well. In particular, the upper bound, which does not require Lemma 18
or the full strength of Lemma 19, can already be established for p in this range. On the
other hand, note that for p ≤ log n/n, with positive probability G(n, p) contains at least one
isolated vertex, in which case the toppling game ends immediately. An open and seemingly
non-trivial problem is to investigate the toppling number of the giant component.
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