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Abstract

We consider a Cops-and-Robber game played on the subsets of an n-set. The robber
starts at the full set; the cops start at the empty set. On each turn, the robber moves
down one level by discarding an element, and each cop moves up one level by gaining
an element. The question is how many cops are needed to ensure catching the robber
when the robber reaches the middle level. A. Hill posed the problem and provided a
lower bound of 2n/2 for even n and

(
n
dn/2e

)
2−bn/2c for odd n. We prove an upper bound

that is within a factor of O(lnn) times this lower bound.
Keywords: Cops-and-robber game; cop number; hypercube; n-dimensional cube

1 Introduction

The game of Cops-and-Robber is a pursuit game on a graph. In the classical form, there is

one robber and some number of cops. The players begin by occupying vertices, first the cops

and then the robber. In each subsequent round, each cop and then the robber can move

along an edge to an adjacent vertex. The cops win if at some point there is a cop occupying

the same vertex as the robber. The cop number of a graph G, written c(G), is the least

number of cops that can guarantee winning.

The game of Cops-and-Robber was independently introduced by Quilliot [7] and by

Nowakowski and Winkler [6]; both papers characterized the graphs with cop number 1. The

cop number as a graph invariant was then introduced by Aigner and Fromme [1]. Analysis

of the cop number is the central problem in the study of the game and often is quite chal-

lenging. The foremost open problem in the field is Meyniel’s conjecture that c(G) = O(
√
n)

for every n-vertex connected graph G (first published in [3]). For more background on

Cops-and-Robber, see [2].

We consider a variant of the Cops-and-Robber game on a hypercube, introduced in the

thesis of A. Hill [4]. This variant restricts the initial positions and the allowed moves. The
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n-dimensional hypercube is the graph with vertex set {0, 1}n (the set of binary n-tuples) in

which vertices are adjacent if and only if they differ in one coordinate. View the vertices as

subsets of {1, . . . , n}, and let the kth level consist of the vertices whose size as subsets if k.

The robber starts at the full set {1, . . . , n}; the cops start at the empty set ∅. On the

kth round, the cops all move from level k − 1 to level k, and then the robber moves from

level n+ 1− k to level n− k. If the cops catch the robber, then they do so on round dn/2e
at level dn/2e, when they move if n is odd, and by the robber moving onto them if n is even.

Let cn denote the minimum number of cops that can guarantee winning the game. Hill [4]

provided the lower bound 2n/2 for even n and
(

n
dn/2e

)
for odd n. Note that in this variant the

cops have in some sense only one chance to catch the robber, on the middle level. When the

cops have the opportunity to chase the robber by moving both up and down, it is known

that the value is much smaller, with the cop number of the n-dimensional hypercube graph

being d(n+ 1)/2e [5].

We first include a proof of Hill’s lower bound, since its ideas motivate our arguments.

We then prove our main result: an upper bound that is within a factor of O(lnn) times this

lower bound.

Theorem 1.1 ([4]). cn ≥
{

2m, n = 2m;
2−m

(
2m+1
m+1

)
, n = 2m+ 1.

Proof. After each move by the robber, some cops may no longer lie below the robber. Such

cops are effectively eliminated from the game. We call them evaded cops; cops not yet evaded

are surviving cops.

Consider the robber strategy that greedily evades as many cops as possible with each

move. Deleting an element from the set at the robber’s current position evades all cops

whose set contains that element. On the kth round, the surviving cops sit at sets of size k,

and the robber has n− k + 1 choices of an element to delete. Since each surviving cop can

be evaded in k ways, the fraction of the surviving cops that the robber can evade on this

move is at least k
n−k+1

.

After the first m rounds, where m = bn/2c, the fraction of the cops that survive is at

most
∏m

i=1

(
1− i

n−i+1

)
. When n = 2m, we compute

m∏
i=1

(
1− i

2m− i+ 1

)
=

m∏
i=1

2m− 2i+ 1

2m− i+ 1
=

(2m)!

(2m)! · 2m
= 2−m.

When n = 2m+ 1, we compute

m∏
i=1

(
1− i

2m− i+ 2

)
=

m∏
i=1

2m− 2i+ 2

2m− i+ 2
=

2mm!(m+ 1)!

(2m+ 1)!
= 2m

/(2m+ 1

m+ 1

)
.

In either case, with fewer than the number of cops specified, the number of cops surviving

to catch the robber after m moves by the robber is less than 1, and the robber wins.
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2 The Upper Bound

If there are enough cops to cover the entire middle level, then the robber cannot sneak

through. The size of the middle level is asymptotic to 2n/
√
πn/2. This trivial upper bound

is roughly the square of the lower bound above. When n is odd one can reduce the upper

bound slightly by observing that one only needs to reach a subset of level (n−1)/2 that hits

the neighborhoods of all the sets at level (n+ 1)/2. However, as the robber starts to move,

the family of sets that need to be protected shrinks.

Our upper bound on cn is within a factor of O(lnn) of the lower bound in Theorem 1.1.

Theorem 2.1. cn ≤
{
O(2m lnn), n = 2m;
O(2−m

(
2m+1
m+1

)
lnn), n = 2m+ 1.

Proof. We again use the terminology of evaded and surviving cops. The cops win if some

cop survives through m rounds. We consider the case n = 2m first, returning later to the

case n = 2m+ 1.

Initially, some number C of cops begin at ∅. Let R be the current set occupied by the

robber. On his kth turn, for k ≤ m−7, each surviving cop at set S chooses the next element

for his set uniformly at random from among R− S. For their last seven turns, the cops use

a slightly different strategy, which we explain later. We claim that for any strategy used

by the robber, this cop strategy succeeds with positive probability when C = (c lnn)2m, for

some constant c to be specified later. That is, some outcome of random choices in the cop

strategy in response to the robber strategy catches the robber.

We argued in Theorem 1.1 that the robber can evade the fraction k
n−k+1

of the surviving

cops in round k. We aim to show that the robber cannot do much better than this against

the random strategy for the cops. Let Bk be the event that the robber can, by deleting an

appropriate element of his current set R, evade more than the fraction (1 + εk)
k

n−k+1
of the

surviving cops on his kth move, where εk = 1/k3. We claim that, with positive probability,

all the events B1, . . . , Bm−7 fail to occur.

Suppose that the robber deletes element i on round k. The probability that a given

surviving cop at level k sits at a set S containing i is the probability that it added i to S

sometime during the first k rounds. A surviving cop sits at a set contained in R, and the

robber has made no distinction among the elements of R. Also, given SsubseteqR, the k-lists

of elements from R are equally likely to have been the list of elements added to S by the

cop. Since k of the elements have been selected by the cop from the (n− k + 1)-set R, the

probability that any one of them was added is exactly k
n−k+1

.

Hence the probability that a given surviving cop will be evaded when the robber deletes

i is k
n−k+1

. Letting Xk,i be the number of surviving cops in round k who are evaded when

the robber deletes i, we have E [Xk,i ] = Nk · k
n−k+1

, where Nk is the number of surviving
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cops at level k. We need the probability that Xk,i does not differ much from its expectation.

Let p = k
n−k+1

and µ = Nkp. By the Union Bound,

P [Bk ] ≤
∑
i

P [Xk,i > (1 + εk)µ ] = (n− k + 1)P [X > (1 + εk)µ ] ,

where X ∼ Bin(Nk, p). The Chernoff Bound now yields

P [Bk ] ≤ 2(n− k + 1)e−ε
2
kµ/3. (1)

Note that µ decreases as Nk decreases, so we obtain an upper bound on P [Bk ] by

substituting for Nk a lower bound on Nk. For k ≤ m− 7, if all of B1, . . . , Bk−1 fail to occur,

then

Nk ≥ C ·
k−1∏
i=1

(
1− (1 + εi)

i

n− i+ 1

)
. (2)

Since the factors are less than 1, the lower bound on Nk decreases as k increases. To facilitate

comparison of this product to the product in Theorem 1.1, we compute

m∏
i=1

1− i
n−i+1

1− (1 + εi)
i

n−i+1

=
m∏
i=1

n− 2i+ 1

n− 2i+ 1− iεi
=

m∏
i=1

(
1 +

iεi
n− 2i+ 1− iεi

)
=

m∏
i=1

(
1 +

1/i2

n− 2i+ 1− 1/i2

)
≤

m∏
i=1

(
1 +

1

i2

)
≤
∞∏
i=1

(
1 +

1

i2

)
.

Note that 1 + 1/i2

n−2i+1−1/i2 > 1 + 1/i2 when i = m = n/2; if m ≥ 2, then this factor can

be combined with another to get the inequality in the right direction. The final product

converges to some value P . (The convergence of the product can be shown by taking the

logarithm and using the Integral Test to verify the convergence of the resulting sum; the

details are routine but mildly tedious.) Thus

m∏
i=1

(
1− (1 + εi)

i

n− i+ 1

)
≥ 1

P

m∏
i=1

(
1− i

n− i+ 1

)
=

1

P
2−m.

For k ≤ m− 7, the lower bound in (2) has at most m− 8 factors. Comparing it to the full

product, we obtain

Nk ≥ C ·
m−8∏
i=1

(
1− (1 + εi)

i

n− i+ 1

)
= C ·

∏m
i=1

(
1− (1 + εi)

i
n−i+1

)∏m
i=m−7

(
1− (1 + εi)

i
n−i+1

)
≥ C ·

1
P

2−m∏m
i=m−7

(
1− i

n−i+1

) =
C

P
2−m

(m+ 8)(m+ 7) · · · (m+ 1)

(15)(13) · · · (3)(1)

≥ C

P
2−m

n8

5.2 · 108
=

c

P · 5.2 · 108
n8 lnn.
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By (1),

P [Bk ] ≤ 2(n− k + 1)e−
1

3k6
k

n−k+1
c

P ·5.2·108
n8 lnn ≤ 2ne−

c
3P ·5.2·108

n2 lnn.

By the Union Bound,

P

[
m−7⋃
k=1

Bk

]
≤ n(n− 14)n−

c
3P ·5.2·108

n2

.

The bound tends to 0 as n tends to infinity, so almost always none of B1, . . . , Bm−7 occur.

Now consider the state of the game just before the cops move to level m− 6. Let N be

the number of surviving cops. Assuming that no Bk has occurred, the argument above (with

a few small changes) shows that N is at least c
P ·1.8·107n

7 lnn; denote this lower bound by N∗.

The cops now adopt a different strategy. Let S denote the family of sets at level m that

remain under the robber. Each surviving cop chooses a path to some point in S that it can

reach, uniformly at random, and follows this path for the remainder of the game regardless

of the robber’s moves. We have argued earlier that at any level, each surviving cop is equally

likely to sit at any set under the robber. Since this is true at level m−7, and each set in S is

reached by the same number of paths from level m− 7, each cop that survives to level m− 7

is equally likely to reach any vertex of S (not conditioned on its location on level m − 7;

conditioned only on it surviving to level m− 7).

If each point in S is reached by at least one cop, then the cops win, since the robber then

cannot reach any point at level m without being caught. For A ∈ S, let XA denote the event

that no cop reaches A. We have argued that each of the N cops surviving to level m− 7 will

by level m have traversed a chain from ∅ to S, with all such chains being equally likely. We

have |S| =
(
m+7
7

)
< (ne

14
)7 for sufficiently large n. Letting b = (14/e)7,

P [XA ] ≤
(

1− b

n7

)N∗
≤ e−

b
n7N

∗
≤ e−

c
30P

lnn.

Now the Union Bound yields

P

[ ⋃
A∈S

XA

]
≤ n7

b
e−

c
30P

lnn =
n7

b
n−

c
30P .

If none of the events Bk and XA occur, then the cops win. But

P

[(
m−7⋃
k=1

Bk

)
∪

(⋃
A∈S

XA

)]
≤ n2e−

c
3P ·5.2·108

n lnn +
n7

b
n−

c
30P .

Taking c = 210P , this probability tends to 1/b as n tends to infinity. Hence the cops win

with positive probability, which completes the proof for n = 2m.

When n = 2m + 1, the cops use the same strategy until their final move (from level

m to m + 1). We claim that this strategy succeeds with positive probability when C =
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c lnn2(m+1)/
√
n for some constant c. This is equivalent to the claimed bound, since

(
2m+1
m+1

)
∼

22m+1/
√
mπ. As before, P

[⋃m−7
k=1 Bk

]
tends to 0 as n tends to infinity. Let N denote the

number of surviving cops just before round m − 6; arguments like those used above yield

N ≥ N∗, where N∗ = cn7

P ·8.3·107 .

Consider the state of the game just before round m−6. Let S and S ′ denote the families

of sets at levels m and m + 1, respectively, still below the robber. As before, each cop now

follows a uniformly randomly chosen path to S. After the robber’s mth move, the cops sit at

sets in S, and the robber sits somewhere in S ′. If some cop still remains below the robber,

then that cop captures the robber and the cops win; otherwise, the robber wins. Hence it

suffices to ensure that, for each A ∈ S ′, some cop reaches a set below A in S.

Since |S ′| =
(
m+8
7

)
and |S| =

(
m+8
8

)
, we have |S ′| ≤ n7/b and |S| ≤ n8/b′ for sufficiently

large n, where b′ = (16/e)8. For A ∈ S ′, let XA denote the event that no cop reaches a set

below A. For each surviving cop, the chains from ∅ to S are equally likely to be followed

during the game. Since A has m + 1 neighbors in S, a given cop reaches some set below A

with probability at least m+1
n8/b′

, which is at least b′/2
n7 . Thus

P [XA ] ≤
(

1− b′/2

n7

)N∗
≤ e−

b′/2
n7 N∗ ≤ e−

3c
5P

lnn.

By the Union Bound,

P

[ ⋃
A∈S′

XA

]
≤ n7

b
e−

3c
5P

lnn =
n7

b
n−

3c
5P .

Taking c = 35P/3, the claim follows as before.

By more careful analysis, one can allow the cops to change strategies at level m − 5

instead of level m− 7. This does not affect the asymptotics of the bound, but it does yield

some improvement in the leading constant.
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