About the Course/Instructor

- Calculator: A graphing calculator is required (i.e., TI-83, TI-84, etc.)
- Instructor: Steven Gambino
- Email: steven.gambino@uri.edu
- Office Hours: TW 12:15-1:30

Exams and Evaluation

There will be three in class exams, and a final, tentatively scheduled as follows

- Exam I (Ch. 1-3)
- Exam II (Ch. 4-6)
- Final (Cumulative)

Your grade will be calculated out of a possible 600 points, distributed as follows:

- Exams (100 points each)
- Final (200 points)
- Homework (100 points)
- Classwork/Quizzes (100 points)

Then, the letter grade will be determined based off the following percentage scale:
A (92 - 100), A- (90 - 91), B+ (87 - 89), B (82 - 86), B- (80 - 81), C+ (77 - 79), C (72 - 76), C- (70 - 71), D+ (67 - 69), D (60 - 66), F (0 - 59).

Homework

Homework will be assigned daily via Wiley Plus.

Classwork/Quizzes

In class work and quizzes will be assigned daily and will vary in format - sometimes evaluated for correctness or completion, sometimes open or closed notes, sometimes individual or partnered.

Learning Outcomes

- Functions. Use functions defined algebraically, numerically and graphically, to determine properties and behaviors of those functions.
- Linear Functions. Recognize the relationship between linearity and constant rate of change, identify slope and intercepts of a linear function, derive equations of straight lines and linear functions, and model real life processes by using linear functions.
• **Quadratic Functions.** Identify different forms of quadratic functions, their geometric properties and graphs, and solve quadratic equations.

• **Power Functions.** Relate basic properties of a power function to the properties of the exponent, use the laws of exponents to put functions in a form where the exponent can be clearly recognized, and model real life processes by using power functions.

• **Exponential Functions.** Interpret different forms of an exponential function in terms of properties of the function, model real life processes by using exponential functions.

• **Logarithmic Functions.** Use properties of logarithms to solve exponential equations, and use logarithms in applied problems.

• **Trigonometric Functions.** Determine period and amplitude of a periodic function from a formula or the graph, or a verbal description of the function, use families of trigonometric functions for modeling.

• **Written Mathematical Communication.** Communicate effectively in written form mathematical ideas and solutions, by stating in a complete, clear, concise, and organized manner steps, calculations, solution strategy, conclusions, and when appropriate, interpreting results in practical or applied terms.

Course Goals

• Provide an introduction to applied mathematics, which is essential to natural and mathematical sciences, and other areas.

• Expose students to mathematical concepts and provide mathematical skills needed in their area of specialization through use of applied problems.

• Provide a bridge for the student from high-school or lower-division mathematics courses to applied calculus courses.

• Help students to become effective mathematics problem solvers. In particular: understand concepts rather than merely mimic techniques, demonstrate understanding through explanation, understand the relationship between a process and the corresponding inverse process, and select the proper mathematical tool or tools for the task at hand.

Make-up Policy

The following policy applies to any exam/assignment in the course:

Makeup exams may be scheduled in the event you are unable to attend the scheduled exams under the following conditions. In particular, if you must miss the exam because of a scheduling conflict, you must notify your instructor before, not after, the exam, and emergencies require you to contact your instructor within 24 hours.

If your reason for missing the exam as scheduled is (i) a University sanctioned event for which verifiable documentation can be provided (including another scheduled class), or (ii) a responsibility to an employer that cannot be rescheduled (with documentation from your employer), then you MUST INFORM YOUR INSTRUCTOR 48 HOURS IN ADVANCE OF THE EXAM AND PROVIDE DOCUMENTATION IF REQUESTED. Makeup exams will be scheduled after the actual exam, and preferably before the class period when exams are to be handed back, but no later than one week after the original date.
If the reason for missing the exam as scheduled is due to (i) illness (with verifiable documentation from a medical provider), or (ii) an emergency (with appropriate documentation), then you MUST INFORM YOUR INSTRUCTOR WITHIN 24 HOURS OF THE EXAM and provide documentation upon your return. Failure to notify your instructor within 24 hours will result in a 0 for the exam. Makeup exams may be scheduled no later than a week after the original date, unless the illness or emergency precludes this, in which case the makeup exam will be given on a common date during the last two weeks of the semester.

Disability Accommodations

Any student with a documented disability should contact your instructor early in the semester so that he or she may work out reasonable accommodations with you to support your success in this course. Students should also contact Disability Services for Students: Office of Student Life, 330 Memorial Union, 874-2098. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Academic Honesty

Cheating is defined in the University Manual section 8.27.10 as the claiming of credit for work not done independently without giving credit for aid received, or any unauthorized communication during examinations (of course, this includes use of the “internet”). Students are expected to be honest in all academic work. The resolution of any charge of cheating or plagiarism will follow the guidelines set forth in the University Manual 8.27.10 - 8.27.20.

Standards of Behavior

Students are responsible for being familiar with and adhering to the published "Community Standards of Behavior: University Policies and Regulations" which can be accessed in the University Student Handbook. Behavior that persistently or grossly interferes with classroom activities is considered disruptive behavior and may be subject to disciplinary action. Such behavior inhibits other students’ ability to learn and an instructor’s ability to teach. A student responsible for disruptive behavior may be required to leave class pending discussion and resolution of the problem and may be reported to the Office of Student Judicial Affairs for disciplinary action.