MTH 535
Measure and Integration I

Course Information and Syllabus, Fall 2001

Text:Measure Theory and Probability by M. Adams and V. Guillemin, Wadsworth & Brooks, 1996  

Prerequisites: Graduate standing, exposure to advanced calculus and basic course in probability

Exams and Grading:

Course grade will be determined based on homework and mid-term and final exams:

Homework: 40 %

Exams: 60 %

The exams will be of the take home variety.
 

The topics that will be covered are:

Basic Construction of Lebesgue Measure.  Lebesgue Integrals. Convergence in measure.  Various Limiting Theorems.

Application of Measure and Integration Theory to Probability Theory: Random Variables and Expectations.
Application of Measure and Integration Theory to Fourier Analysis
Application to Some  Problems in Ordinary Differential Equations: Existence Problems and Asymptotic Behavior of Solutions
 

Computer Requirements

The use of computer algebra systems such as MATHEMATICA, MAPLE, and Scientific Notebook is encouraged.  Some MATHEMATICA and/or MAPLE notebooks will be provided and demonstrated in the class. Some of the problems may need
MAPLE or MATHEMATICA to be solved effectively.
 

Instructor: Dr. M. Kulenovic,
Phone: 44436
e-mail:  kulenm@math.uri.edu
Online information: www.math.uri.edu/courses or www.math.uri.edu/~kulenm

Office: Tyler 216
Office hours: MWF 11-12 and by appointment. 

Time:
Place: