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MTH 244 - Additional Information for Chapter 3
Section 1 (Merino) and section 3 (Dobrushkin) - March 2003

1 Linear Systems of Differential Equations of Order One

A system of n first order linear differential equations

x′1 = a11x1 + · · ·+ a1nxn + b1(t)
...

x′1 = an1x1 + · · ·+ annxn + bn(t)

may be written in matrix form as
x′ = A(t)x + b(t)

where

A(t) =

 a11(t) · · · a1n(t)
...

. . .
...

an1(t) · · · ann(t)

 , x =

 x1(t)
...

xn(t)

 , b(t) =

 b1(t)
...

bn(t)

 ,

The system is said to be homogeneous if b(t) = the zero vector, and the system has constant coefficients if the
aij ’s and the bj ’s do not depend on the independent variable t.

Therefore a homogeneous linear system with constant coefficients has the form

x′ = Ax

where A is a constant, n× n matrix.

Example 1. Consider the system
x′1 = 5x1 + 3x2

x′2 = −6x1 − 4x2

Then, the matrix A is given by

A =
(

5 3
−6 −4

)
Later we will see how to solve the system. For now let’s take a look at two solutions to the system:

x1 =
(

e−t

−2e−t

)
x2 =

(
e2t

−e2t

)
You may check that these are solutions by direct substitution. Linear independence can be checked by showing
that the equation c1x1 + c2x2 = 0 has as unique solution c1 = c2 = 0. Another method to check linear
independence is to form a square matrix with columns x1 and x2, then verify that the determinant of the matrix
is not zero.

Theorem 1 (Superposition Principle). If x1 and x2 are two solutions to the homogeneous equation x′ =
A(t)x, then for any choice of constants c1 and c2 the vector function x = c1x1 + c2x2 is also a solution.

We will present later theorems that give the solution to systems of DEs when the matrix A is constant.
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2 Matrix Exponential

Recall from Calculus MTH 142 the Taylor series expansion of the exponential function:

ex = I + x +
1
2!

x2 +
1
3!

x3 + · · ·+ 1
n!

xn + · · ·

The exponential of a n× n (square) matrix B may be defined with the same formula:

eB = I + B +
1
2!

B2 +
1
3!

B3 + · · ·+ 1
n!

Bn + · · ·

Here I is the n× n identity matrix, and B2 = B ·B, B3 = BBB, etc. That the series “converges” is something
discussed in more advanced courses. For now we accept this fact. A more rigorous definition of matrix exponential
is given in the Appendix.

When dealing with systems of differential equations, one has often to deal with expressions like eAt, where A
is a matrix and t is a real number or real variable. With the above formula we get

eAt = I + At +
1
2!

t2A2 +
1
3!

t3A3 + · · ·+ 1
n!

tnAn + · · ·

As an interesting observation, note that term by term differentiation of the formula for eAt gives that

d

dt
eAt = AeAt

Here is a proof of this statement:
d
dte

At = 0 + A + 1
2!2tA2 + 1

3!3t2A3 + · · ·+ 1
n!ntn−1An + · · ·

= 0 + A + 1
1! tA

2 + 1
2! t

2A3 + · · ·+ 1
(n−1)! t

n−1An + · · ·

= A
(
I + At + 1

2! t
2A2 + 1

3! t
3A3 + · · ·+ 1

n! t
nAn + · · ·

)
= AeAt

Calculating eAt is best done with computers. There are sophisticated algorithms for doing this efficiently.

3 Solving linear systems of DEs when A is constant

Consider the homogeneous system of DEs x′ = Ax, with initial condition x(0) = x0, and let us form the vector

x̃ = eAtx0

A simple computation gives that
d

dt
x̃ =

d

dt
(eAtx0) = AeAtx0 = Ax̃

hence we conclude that x̃ is a solution to the system of DEs. Moreover, we have x̃(0) = x0, so x̃ also satisfies
the initial condition. This gives the following result.

Theorem 2. The solution to the initial value problem

x′ = Ax, x(0) = x0

is
x̃ = eAtx0

The following result gives the solution when the system is not homogeneous.

Theorem 3. The solution to the initial value problem

x′ = Ax + b(t), x(0) = x0

is

x = eAtx0 +
∫ t

0

e(t−s)Ab(s)ds

Integration of the vector function e(t−s)Ab(s) is to be done entry by entry.

WARNING: Theorems 1 and 2do not apply if the matrix A is not constant!
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4 Computing the exponential of a matrix with Maple

We load the linalg package first and enter a matrix, followed with the command to get eBt:
> with(linalg): > B:=array([[1,1],[4,1]]);

B :=
[

1 1
4 1

]
> EBt :=exponential(B,t);

EBt :=


1
2

e(−t) +
1
2

e(3 t) 1
4

e(3 t) − 1
4

e(−t)

e(3 t) − e(−t) 1
2

e(−t) +
1
2

e(3 t)


We now calculate the determinant of eBt to verify that the column vectors are linearly independent.

> det(EBt);
e(−t) e(3 t)

> simplify(%);
e(2 t)

The determinant of eBt is nonzero for all t, so its column vectors are linearly independent functions.
Now we show how to define a column vector of constants in Maple. It is displayed as a row to save space:

> vec := vector([-2,5]);
vec := [−2, 5]

The next computation shows how to multiply the matrix eBt by the column vector:

> Bv := evalm(EBt&*vec);

Bv :=
[
−9

4
e(−t) +

1
4

e(3 t),
1
2

e(3 t) +
9
2

e(−t)

]
Here is the first entry of the resulting vector:

> Bv[1];

−9
4

e(−t) +
1
4

e(3 t)

5 Appendix: Rigorous definition of matrix exponential

The exponential matrix, X(t) = eAt, may be defined as follows:

eAt =
m−1∑
j=0

bj(t)Aj , (1)

where m is the dimension of the matrix A, and the coefficient functions bj(t), j = 0, 1, . . . ,m− 1, in exponential
representation (1) satisfy the following equations:

eλkt = b0(t) + b1(t)λk + · · ·+ bm−1(t)λm−1
k , k = 1, 2, . . . , s. (2)

We denote here λk, k = 1, 2, . . . , s, to be distinct eigenvalues of a square matrix A, that is, they are solutions of
the polynomial equation

∆(λ) = 0, where ∆(λ) = det(λI−A). (3)

This polynomial, ∆(λ), is called the characteristic polynomial of the matrix A. The system of linear algebraic
equations (2) is sufficient to determine the coefficient functions bj(t), j = 0, 1, . . . ,m − 1 only if all eigenvalues
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of the matrix A are different1. If λk is a double root of the characteristic equation ∆(λ) = 0 then need to add
to Eqs. (2) additional equation:

t eλkt =
d

dλp

[
b0(t) + b1(t)λ + · · ·+ bm−1(t)λm−1

]∣∣∣∣
λ=λk

. (4)

Example 1. Let

A =

 1 3 3
−3 −5 −3
3 3 1

 .

Its characteristic polynomial is ∆(λ) = (λ + 2)2(λ− 1) has one double root λ2 = −2 and a simple root λ1 = 1.
From Eq. (2) follows that the coefficient functions bj(t), j = 0, 1, 2

et = b0(t) + b1(t) + b2(t)
e−2t = b0(t)− 2b1(t) + 4b2(t)

t e−2t = b1(t)− 4b2(t)

From the first equation we find b0(t) to be

b0(t) = et − b1(t)− b2(t).

Plugging this expression into the second equation leads

e−2t =
(
et − b1(t)− b2(t)

)
− 2b1(t) + 4b2(t)

or
1
3

e−2t − 1
3

et = −b1(t) + b2(t).

We add this equation with t e−2t = b1(t) + b2(t) to obtain

b2(t) =
1
9

et − 1
9

e−2t − 1
3

t e−2t.

Now we can determine the other coefficient functions:

b1(t) =
4
9

et − 4
9

e−2t − 1
3

t e−2t

b0(t) =
4
9

et +
5
9

e−2t +
2
3

t e−2t

With this in hand, we obtain the exponential function

eAt =
(

4
9

et +
5
9

e−2t +
2
3

t e−2t

)  1 0 0
0 1 0
0 0 1


+

(
4
9

et − 4
9

e−2t − 1
3

t e−2t

)  1 3 3
−3 −5 −3
3 3 1


+

(
1
9

et − 1
9

e−2t − 1
3

t e−2t

)  1 −3 −3
3 7 3
−3 −3 1


=

 et et − e−2t et − e−2t

−e−t + e−2t −et + 2 e−2t −et + e−2t

et − e−2t et − e−2t et

 ,

because  1 −3 −3
3 7 3
−3 −3 1

 =

 1 3 3
−3 −5 −3
3 3 1

2

= A2.

2

1This is not always the case. However, here we deal only with matrices with distinct eigenvalues.


