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We study a deterministic continuous-time predator–prey model with parasites, where the prey population
is the intermediate host for the parasites. It is assumed that the parasites can affect the behavior of the
predator–prey interaction due to infection. The asymptotic dynamics of the system are investigated. A
stochastic version of the model is also presented and numerically simulated. We then compare and contrast
the two types of models.

Keywords: predator-prey-parasite interaction; global asymptotic stability; uniform persistence;
continuous–time Markov chain

AMS Subject Classifications: 92D40; 92D30

1. Introduction

Since the pioneering work of Kermack and McKendrick [17] on an SIRS model, epidemic models
have received considerable attention in the scientific community. Many of these mathematical
models have contributed to the understanding of the evolution of the diseases and provide valuable
information for control strategies. We refer the reader to [3,5,8,13,19] and literature cited therein
for general epidemic models. On the other hand, the majority of the epidemic models in the
literature deal with evolution of the disease within a population. More recently, researchers have
investigated predator–prey models with infectious diseases [7,11,12].

It is well documented that parasites can play an important role in shaping population and
community dynamics and maintaining bio-diversity [15,16]. For trophically transmitted parasites,
the populations are transmitted up the food chain from immediate host species to the definite host
populations via predation. Consequently, the interactions between prey and predator are affected
by the presence of the parasites. For instance, it is often found that infected individuals are less
active and hence can be caught more easily [14]. However, for the parasites to be successful, it is
important to restrict host’s predation mortality as well as the disease related mortality.

In this manuscript we study a deterministic predator–prey model with parasites, where the para-
sites are not explicitly modeled. The modeling assumptions are similar to that given by Fenton and
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88 S.R.-J. Jang and J. Baglama

Rands [10]. The community under current investigation is composed of two host species, one preys
on the other. The predator–prey populations harbor parasites that use the prey species as an inter-
mediate host to transmit the disease to the definitive host, the predator species. The infection rate
is modeled by the simple mass action and we use a Holling type I function to model the functional
response of the predator. The resulting model consists of four ordinary differential equations. Exis-
tence conditions for boundary and interior steady states are derived and some global results are
obtained using a simple comparison method. We also perform numerical simulations to study the
model. A stochastic model based on the deterministic model is formulated in terms of continuous
time Markov chain and simulated numerically. We then compare and contrast the two models.

The deterministic model presented here is different from the predator–prey models studied by
Chattophadhyay and Arino [7], by Hadeler and Freedman [11], and by Han et al. [12]. In [11],
it is assumed that both the infected and uninfected prey can reproduce at the same rate and there
is no disease related mortality for both the infected prey and predator. Moreover, the authors use
a Holling II functional to model the predation. However, the force of infection is also modeled
using simple mass action. Han et al. [12] on the other hand study four predator prey models
with infectious diseases, where both simple mass action and standard incidence are investigated.
However, their models are based on the decomposition of the logistic differential equation. In [7],
it is also assumed that both infected and uninfected prey can reproduce and with the same rate.

Our model derivation is based on a model proposed by Fenton and Rands [10]. Although no
rigorous mathematical analysis was presented in [10], it was found in [10] that increasing the
parasite’s manipulation will decrease the uninfected predator population size and so that the pop-
ulation may become extinct in the stochastic reality of the natural world if parasite’s manipulation
is too high. Our numerical study shows that increasing the parasite’s manipulation increases both
the infected prey and predator population sizes of the periodic solution. Therefore increasing
parasite manipulation is likely to increase its persistence in the deterministic world. Moreover,
the persistence result for the parasite derived in this study is expressed in terms of a threshold
that involves only the nontrivial boundary steady state with nonzero uninfected populations. The
expression is very easy to verify and also shows that the parasite will be more likely to sur-
vive if its manipulation is larger. These analytical results no longer hold when we consider a
corresponding continuous-time Markov chain model. Both the infected and uninfected prey and
predator populations may become extinct in the stochastic model while they can persist in the
deterministic model.

In the following section a deterministic model is presented. A stochastic model is given in
Section 3 and the final section provides a brief summary and discussion.

2. A deterministic model

We assume that the parasite is a microparasite and so the parasite population is not explicitly
modeled in the system. We only consider an individual of each species as infected or uninfected.
Let x1 and x2 denote the uninfected and infected prey populations, respectively, and y1 and y2

be the uninfected and infected predators, respectively. In the absence of the predator and the
parasite, the prey population reproduces at per capita rate r with carrying capacity 1/q. It is
assumed that the infected prey does not reproduce.

We adopt a simple Holling type I function as the functional response, and let e denote the
predator conversion rate. Since infected prey may increase its probability of being preyed upon,
we let θ denote the factor that effects the interaction between prey and predator. The predator preys
on both infected and uninfected prey indiscriminately when θ = 1. If θ < 1, then the infected
prey has a less chance of being captured. The infected prey will be more likely to be preyed
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Journal of Biological Dynamics 89

upon if θ > 1. The natural death rates of the infected prey and predator are denoted by d1 and d2

respectively. The disease related mortality rates of the prey and predator populations are denoted
by α1 and α2. These parameters are assumed to be constants.

A simple mass action is used to model the force of infection between infected prey and unin-
fected predator. The parasites in the predator produce infective stages at a constant rate λ, which
are passed into the environment where they either die at rate μ or are consumed by the prey at a
rate ν. For simplicity, it is assumed that the external parasite stages are short and fast and so we
do not model them explicitly in the model. Under these biological assumptions, the model takes
the following form:

dx1

dt
= rx1(1 − qx1) − δx1(y1 + y2) − νλ

μ
x1y2,

dx2

dt
= νλ

μ
x1y2 − (d1 + α1)x2 − θδx2(y1 + y2),

dy1

dt
= eδx1y1 − θδx2y1 − d2y1,

dy2

dt
= θδx2y1 − (d2 + α2)y2, (1)

where all the parameters are positive with 0 < e ≤ 1. Model (1) along with other models have
been simulated in [10].

We first convert system (1) into a dimensionless form. Let

x ′
1 = eδ

r
x1, x ′

2 = θδ

r
x2, y ′

1 = δ

r
y1, y ′

2 = δ

r
y2, and τ = rt.

We have

dx ′
1

dτ
= x ′

1

(
1 − qr

eδ
x ′

1

)
− x ′

1(y
′
1 + y ′

2) − νλ

μδ
x ′

1y
′
2,

dx ′
2

dτ
= θνλ

μeδ
x ′

1y
′
2 − d1 + α1

r
x ′

2 − θx ′
2(y

′
1 + y ′

2),

dy ′
1

dτ
= x ′

1y
′
1 − x ′

2y
′
1 − d2

r
y ′

1,

dy ′
2

dτ
= x ′

2y
′
1 − d2 + α2

r
y ′

2.

Letting

K = eδ

qr
, β = νλ

μδ
, and d ′

i = di

r
, α′

i = αi

r
for i = 1, 2,

and drop off all the primes with γ = d1 + α1, we have the following system:

ẋ1 = x1

(
1 − x1

K

)
− x1(y1 + y2) − βx1y2,

ẋ2 = θβ

e
x1y2 − γ x2 − θx2(y1 + y2),

ẏ1 = x1y1 − x2y1 − d2y1, (2)

ẏ2 = x2y1 − (d2 + α2)y2,

x1(0), x2(0), y1(0), y2(0) ≥ 0.

In the following we study the dimensionless system (2).
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90 S.R.-J. Jang and J. Baglama

LEMMA 2.1 Solutions of system (2) remain non-negative and are bounded.

Proof Since ẋ1|x1=0 = ẏ1|y1=0 = 0, ẋ2|x2=0 ≥ 0 and ẏ2|y2=0 ≥ 0, solutions of system (2)
remain non-negative. Let X = (θβ/e)x1 + x2 + (θβ/e)y1 + (θβ/e)y2. Then Ẋ ≤ (θβ/e)

x1(1 − x1/K) − γ x2 − (θβd2/e)y1 − (θβ(d2 + α2)/e)y2 = −(θβ/e)x1 − γ x2 − (θβd2/e)y1 −
(θβ(d2 + α2)/e)y2 + (θβ/e)x1(2 − x1/K). It is clear that there exists M > 0 such that x1(t) ≤
M for all t ≥ 0. Hence Ẋ ≤ (2θβM/e) − mX, where m = min {1, γ, d2} > 0. As a result,
lim supt→∞ X(t) ≤ (2θβM/em) and solutions of system (2) are bounded. �

If initially there is no predator population, then the prey population will stabilize in its
carry capacity level K . That is, if y1(0) = y2(0) = 0, then y1(t) = y2(t) = 0 for t > 0 and
limt→∞(x1(t), x2(t)) = (K, 0) if x1(0) > 0. On the other hand if x2(0) = y2(0) = 0, then
x2(t) = y2(t) = 0 for all t > 0 and system (2) reduces to the following two-dimensional system:

ẋ1 = x1

(
1 − x1

K

)
− x1y1,

ẏ1 = (x1 − d2)y1. (3)

This is the classical Lotka–Volterra predator–prey model with density dependence on the prey
and its dynamical behavior are well known [2]. In particular, if the interior steady state (x̄1, ȳ1)

exists, i.e., if K > d2, then solutions of Equation (3) with positive initial condition converge to
(x̄1, ȳ1). Therefore, in the absence of the parasites, the predator and prey populations can coexist
in a stable equilibrium fashion.

We now begin to study simple solutions of system (2). The system always has two steady
states: E0 = (0, 0, 0, 0), the extinction steady state where both prey and predator populations
cannot survive, and E1 = (K, 0, 0, 0), where only the uninfected prey can survive. The Jacoban
matrix of system (2) evaluated at E0 has the following form:

J (E0) =

⎛
⎜⎜⎝

1 0 0 0
0 −γ 0 0
0 0 −d2 0
0 0 0 −(d2 + α2)

⎞
⎟⎟⎠ .

It follows that E0 is always unstable. Similarly, the Jacoban matrix of Equation (2) evaluated at
E1 is given by

J (E1) =

⎛
⎜⎜⎝

−1 0 −K −(1 + β)K

0 −γ 0 θβK/e

0 0 K − d2 0
0 0 0 −(d2 + α2)

⎞
⎟⎟⎠ .

We conclude that E1 is locally asymptotically stable if K < d2 and unstable if K > d2. It can be
easily shown thatE1 is globally asymptotically stable in {(x1, x2, y1, y2) ∈ R

4+ : x1 > 0}whenever
it is locally asymptotically stable.

LEMMA 2.2 The steady state E1 = (K, 0, 0, 0) is globally asymptotically stable for system (2)

in {(x1, x2, y1, y2) ∈ R
4+ : x1 > 0} if K < d2.

Proof Notice ẏ1 ≤ (x1 − d2)y1. Since lim supt→∞ x1(t) ≤ K , for any given ε > 0 there exists
t0 > 0 such that x1(t) < K + ε for t ≥ t0. We choose ε > 0 so that K + ε < d2. It follows that
ẏ1 ≤ (K + ε − d2)y1 for t ≥ t0 and hence limt→∞ y1(t) = 0. Therefore for any given ε > 0
we can find t1 > 0 such that (x2y1)(t) < ε for t ≥ t1. Thus ẏ2 < ε − (d2 + α2)y2(t) for t ≥ t1
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Journal of Biological Dynamics 91

implies limt→∞ y2(t) = 0 since ε > 0 was arbitrary. Consequently, for any ε > 0, there exists
t2 > 0 such that (θβ/e)(x1y2)(t) < ε for t ≥ t2, and from the x2 equation in system (2), we obtain
limt→∞ x2(t) = 0. As a result, limt→∞ x1(t) = K if x1(0) > 0 and the proof is complete. �

We now assume K > d2 for the remainder of the discussion. Letting x2 = y2 = 0, we obtain
another steady state E2 = (x̄1, 0, ȳ1, 0), where x̄1 = d2 and ȳ1 = 1 − (d2/K). This is the steady
state for which only the uninfected prey and predator can survive and the parasites cannot invade
the populations. The corresponding Jacoban matrix has the following form:

J (E2) =

⎛
⎜⎜⎝

−d2/K 0 −d2 −(1 + β)d2

0 −γ − θȳ1 0 θβd2/e

ȳ1 −ȳ1 0 0
0 ȳ1 0 −(d2 + α2)

⎞
⎟⎟⎠ ,

which is similar to the following matrix:
⎛
⎜⎜⎝

−d2/K −d2 0 −(1 + β)d2

ȳ1 0 −ȳ1 0
0 0 −γ − θȳ1 θβd2/e

0 0 ȳ1 −(d2 + α2)

⎞
⎟⎟⎠ .

Let the upper left 2 × 2 submatrix and the lower right 2 × 2 submatrix of the above matrix
be denoted by J1 and J2, respectively. Since tr(J1) < 0, det(J1) > 0, tr(J2) < 0 and det(J2) =
(γ + θȳ1)(d2 + α2) − (θβd2/e)ȳ1, we see that E2 is locally asymptotically stable if

(γ + θȳ1)(d2 + α2) − θβd2

e
ȳ1 > 0. (4)

Observe that inequality (4) holds if ȳ1 = 1 − d2/K > 0 is small. Thus steady state E2 is locally
asymptotically stable when E1 just loses its stability, i.e., when E2 just appears. A straightforward
computation shows that tr2(J2) − 4det(J2) > 0 and thus eigenvalues of the Jacoban matrix of
system (2) evaluated at E2 are all real numbers. Therefore E2 will lose its stability via either
a saddle node, a transcritical, or a pitchfork bifurcation when det(J2) = 0. In the following,
we provide a sufficient condition for which E2 is globally asymptotically stable in �, where
� = {(x1, x2, y1, y2) ∈ R

4+ : x1 > 0, y1 > 0}.

LEMMA 2.3 Let K > d2. Then steady state E2 = (x̄1, 0, ȳ1, 0) exists, where x̄1 = d2 and ȳ1 =
1 − d2/K . If β < (e(d2 + α2)/K), then E2 is globally asymptotically stable in �.

Proof Since d2 < K , steady state E2 exists. We apply a simple comparison method. Observe
that ẋ2 + θẏ2 ≤ (θ/e)βx1y2 − γ x2 − θ(d2 + α2)y2. Given any ε > 0 we can find t0 > 0 such
that x1(t) < K + ε for t ≥ t0. By our assumption, we can choose ε > 0 so that (β/e)(K + ε) <

d2 + α2. Then for t ≥ t0 we have

ẋ2 + θẏ2 <

[
β

e
(K + ε) − (d2 + α2)

]
θy2 − γ x2 < −m0(x2 + θy2),

where m0 = min {γ, d2 + α2 − (β/e)(K + ε)} > 0. This shows that limt→∞ x2(t) =
limt→∞ y2(t) = 0. Therefore system (2) is asymptotically autonomous to the two-dimensional
system (3). It follows from [18] that solutions of system (2) with initial condition lying in �

converge to E2. It is also easy to see that E2 is locally asymptotically stable since inequality (4)
holds. Hence E2 is globally asymptotically stable in �. �
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92 S.R.-J. Jang and J. Baglama

Since Hopf bifurcation is impossible to occur for system (2) when E2 loses its stability by the
discussion just before Lemma 2.3, we next investigate the existence of interior steady states. Let
(x1, x2, y1, y2) denote a positive equilibrium. Its components must satisfy the following equations:

1 − x1/K − y1 − y2 − βy2 = 0,

θβ

e
x1y2 − γ x2 − θx2(y1 + y2) = 0,

x1 − x2 − d2 = 0,

x2y1 − (d2 + α2)y2 = 0.

Hence y2 = ((x1 − d2)y1)/(d2 + α2) and y1 = ((d2 + α2)(1 − x1/K))/(x1(1 + β) + α2 − d2β).
It follows that the x1-component of the steady state must satisfy

d2 < x1 < K (5)

and

ax2
1 + bx1 + c = 0, (6)

where

a = θ

K

(
1 − β

e

)
,

b = θβ

e
− γ (1 + β) + θα2

K
− θ,

and

c = −γ (α2 − d2β) − θα2.

Let f (x) = ax2 + bx + c. Using the assumption d2 < K , we see that

f (K) = −γ (1 + β)K − γ (α2 − d2β) < −γ (1 + β)K − γα2 + γKβ < 0.

Notice

f (d2) = θ

K

(
1 − β

e

)
d2

2 − θd2 + θβ

e
d2 − γ (α2 + d2) + θα2d2

K
− θα2,

and the left-hand side of inequality (4) can be rewritten as

γ (d2 + α2) + θ

(
d2 + α2 − β

e
d2

)
K − d2

K

= γ (d2 + α2) + θ

K

(
1 − β

e

)
(Kd2 − d2

2 ) + θα2
K − d2

K

= γ (d2 + α2) − θ

K

(
1 − β

e

)
d2

2 + θd2 − d2βθ

e
+ θα2 − θd2α2

K

= −f (d2).

Consequently, inequality (4) holds if and only if f (d2) < 0.

LEMMA 2.4 Let K > d2. Then system (2) has no interior steady state if inequality (4) holds,
i.e., if E2 is locally asymptotically stable, and system (2) has a unique interior steady state
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E∗ = (x∗
1 , x∗

2 , y∗
1 , y∗

2 ) if (4) is reversed, i.e., if E2 is unstable. Moreover, system (2) is uniformly
persistent if inequality (4) is reversed.

Proof Suppose (4) holds. Then f (d2) < 0. We claim that system (2) has no interior steady
state. If β ≤ e, then f is concave up with f (0) = c. If c ≤ 0, then Equation (6) has a positive
solution x∗

1 > K . Hence system (2) has no feasible interior steady state by Equation (5). Similarly,
if c > 0, then Equation (6) may have two positive solutions. However, since f (d2) < 0 and
f (K) < 0, these two solutions will not lie between d2 and K as required in Equation (5), and
hence system (2) has no interior steady state. If β > e, then f is concave down. If c ≥ 0, then
since f (d2) < 0 there is no interior steady state by Equation (5). Observe that the solutions of
Equation (6) vary continuously with respect to coefficients a, b, and c. Fix any a, b, and c with
a < 0. If c = 0, then Equation (6) has a unique positive solution −(b/a) provided b > 0, where
−(b/a) < d2 since f (d2) < 0. Suppose c < 0. If Equation (6) has a unique positive solution
then this positive solution is (−b/2a) with b > 0 and b2 − 4ac = 0, which is clearly less than d2

since (−b/2a) < (−b/a). If Equation (6) has two positive solutions denoted by x∗
11 and x∗

12 with
x∗

11 < x∗
12, then it is necessary that b > 0. It follows that x∗

12 = (−b/2a) − (
√

b2 − 4ac/2a) <

(−b/2a) − (b/2a) < d2. We conclude that system (6) has no solutions satisfying system (5) and
as a result system (2) has no interior steady state.

Suppose inequality (4) is reversed. Then steady state E2 is unstable and it is necessary that
β > e, i.e., f is concave down. If f (0) ≥ 0, then since f (d2) > 0 and f (K) < 0, system (6)
has a unique positive solution x∗

1 that lies between d2 and K . Hence system (2) has a unique
interior steady state. Similar conclusion is reached if f (0) < 0. We conclude that system (2) has
a unique interior steady state E∗ = (x∗

1 , x∗
2 , y∗

1 , y∗
2 ) if inequality (4) is reversed. To prove uniform

persistence of system (2), first notice system (2) is dissipative by the proof of Lemma 2.1. It is
clear from J (E0) that the stable manifold of E0 lies on the x2y1y2-hyperplane and the unstable
manifold lies on the x1-axis. Since an eigenvector of J (E1) with respect to λ = K − d2 > 0 can
be chosen to be (1, 0, (−1 − λ)/K, 0)T, the unstable manifold of E1 lies outside of the positive
cone of R

4 and the stable manifold of E1 lies on the x1x2y2-hyperplane.
Furthermore, since inequality (4) is reversed, J (E2) has a unique positive eigenvalue λ+ =

(tr(J2) + √
tr(J2)2 − 4 det(J2)/2). An eigenvector of J (E2) belonging to λ+ within scalar mul-

tiplications is (x̃1, x̃2, ỹ1, ỹ2) with ỹ1 < 0 and, therefore, the unstable manifold of E2 also lies
outside of R

4+. Let λ− = (tr(J2) − √
tr(J2)2 − 4det(J2))/2 denote the negative eigenvalue of J2.

Then an eigenvector of J (E2) associated to λ− has the form (x̂1, x̂2, ŷ1, ŷ2) with ŷ2 < 0. Therefore,
the stable manifold of E2 also lies outside of the interior of R

+
4 . We conclude that the boundary

flow of system (2) is isolated and acyclic with acyclic covering {E0, E1, E2}, where the stable set
of each Ei does not intersect with the interior of R

4+ for i = 0, 1, 2. Consequently, system (2) is
uniformly persistent by [6]. �

From an earlier discussion, we can conclude that system (2) undergoes a transcritical bifurcation
when E2 becomes nonhyperbolic. Recall in the boundary equilibrium E2 = (x̄1, 0, ȳ1, 0) we have
x̄1 = d2 and ȳ1 = 1 − (x̄1/K). Therefore x∗

1 = x∗
2 + d2 > x̄1, and

y∗
1 = (d2 + α2)

(
1 − (

x∗
1/K

))
x∗

1 (1 + β) + α2 − d2β
<

(d2 + α2) (1 − (x̄1/K))

x∗
1 (1 + β) + α2 − d2β

<
(d2 + α2)ȳ1

d2(1 + β) + α2 − d2β
= ȳ1.

Consequently, in the coexistence equilibrium E∗ = (x∗
1 , x∗

2 , y∗
1 , y∗

2 ) the uninfected prey has a
larger population size and the uninfected predator has a smaller population size than the corre-
sponding population sizes in the equilibrium E2 = (x̄1, 0, ȳ1, 0) for which both populations can
survive but not the parasites. Notice (x̄1, ȳ1) is also the coexistence equilibrium for the predator–
prey system (3) when parasites are absent. Therefore, the introduction of parasites can promote
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the prey population by increasing its population size and diminishing its predator’s population
size at least in the equilibrium level.

Furthermore, using the original model parameters, inequality (4) can be rewritten as

θδνλx̄ ′
1

μ(d2 + α2)
× ȳ ′

1

d1 + α1 + θδȳ ′
1

< 1, (7)

where (x̄ ′
1, 0, ȳ ′

1, 0) = ((d2/eδ), 0, (r(eδ − d2q)/eδ2), 0) is the corresponding boundary steady
state for the original system (1). The first fraction in Equation (7) can be interpreted as the number
of new infections in the prey population for each infectious predator and the second fraction is
the number of new infections in the predator population per infected prey when both populations
consist of only uninfected individuals. The parasites cannot invade the populations if the product
of these two quantities is less than one. Notice the left-hand side of inequality (7) as a function
of θ is increasing. Therefore, increasing θ will enable the parasites to invade the populations. In
other words, the parasites will be more likely to persist if infected prey can be caught more easily
by its predator. Similarly, increasing either ν or λ, or decreasing either μ, α1, α2, e, or δ will also
enhance the persistence of parasites.

We remark that the left-hand side of inequality (7) is different from R0, the basic reproductive
ratio, defined in Equation (2) of [10]. Indeed, in terms of our notations of system (1), R0 defined
in [10] is

R0 = θδy1

d1 + δθ(y1 + y2)
× λ

d2
× νy2

μ + ν(x1 + x2)
, (8)

where x1, x2, y1, y2 are the population sizes of uninfected prey, infector prey, uninfected predator,
and infected predator, respectively. It is clear that the left-hand side of inequality (7) is different
from the right-hand side of Equation (8). The parameter R0 presented in [10] is derived from
the work by Dobson and Keymer [9, p. 362]. R0 is termed as the basic reproductive rate of the
parasite life history in [9] which depends on the population sizes of both intermediate and definite
hosts. The parasite needs sufficient definite host of both infected and uninfected populations for
its survival. On the other hand, inequality (7) is derived from local stability of E2. It depends on
the population sizes of uninfected prey and predator at the equilibrium. The parasite population
can persist if inequality (7) is reversed.

We now use numerical simulations to study system (2). We adopt the following parameter
values: K = 5, d2 = 0.5000, α2 = 0.2000, β = 0.8000, e = 0.1000, and γ = 0.2000. Since
K > d2, steady state E1 = (K, 0, 0, 0) is unstable and there is another boundary steady state
E2 = (x̄1, 0, ȳ1, 0) with x̄1 = 0.5, and ȳ1 = 10. We calculate θ for which the left-hand side
of (7) is one, denoted by θc, where θc = 0.0471 for our parameter values. Recall that E2 is
locally asymptotically stable when inequality (7) holds. In particular, inequality (7) is true if and
only if θ < θc. Although it is not presented here, numerical simulations showed that solutions
with positive initial conditions converge to E2 for θ < θc for the initial conditions randomly
chosen.

Once θ passes beyond θc, steady state E2 becomes unstable and the model has a unique inte-
rior steady state E∗ by our earlier mathematical analysis. Simulations do reveal the existence
of a unique interior steady state E∗ and all solutions with positive initial conditions randomly
simulated converge to the interior steady state when θ is only little larger than θc. Therefore,
numerical simulations confirm our earlier observation that Hopf bifurcation cannot occur when
E2 loses its stability. However, as we increase θ to 0.0571, a positive periodic solution exists.
Therefore, a Hopf bifurcation has occurred when θ is larger than θc = 0.0471 and less than 0.0571.
The x2, y2 components of the periodic solution are plotted in Figure 1a and b with different θ

values.
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Figure 1. This figure plots solutions of system (2) with parameter values K = 5, d2 = 0.5000, α2 = 0.2000,
β = 0.8000, e = 0.1000, and γ = 0.2000. When θ = 0.0571, the x2, y2 components of the solution is plotted in (a).
(b) provides the x2, y2 components of the solution with θ = 1.0. (c) plots the x2, y2 components of a solution with initial
condition (1.8252, 2.6981, 1.8207, 0.4637) after some transient behavior has been truncated with θ = 1. (d) plots x2
and y2 components of two solutions against time with θ = 1.7.

Notice the positive periodic solution that appears in Figure 1a corresponds to a positive fixed
point of the associated Poincaré map for system (2). The bifurcation of the fixed point for the
Poincaré map is itself a bifurcation of the periodic solution for system (2). If it is a saddle node
bifurcation of the map, then it would imply the birth and disappearances of two periodic solutions.
If it is a period two bifurcation, then the positive periodic solution will double its period.

As we increased θ , we noticed that the positive periodic solution becomes nonoval. It was
suspected that the periodic solution either doubled its period or the system has two positive
periodic solutions as shown in Figures 1c and d. However, a closer examination reveals that
the same periodic solution persists with roughly the same period. See Figure 1d for the x2,
y2 components of the solution with initial condition (1.8252, 2.6981, 1.8207, 0.4637) and
(1.4062, 2.5318, 3.2239, 0.0035) when θ = 1.7. The solutions took much longer to converge
to the positive periodic solution. Therefore, we conjecture that the positive periodic solution is
globally asymptotically stable whenever it exists. We also tested the system for sensitive depen-
dence on initial conditions for large values of θ and found that the model is not sensitive to initial
conditions.

3. A stochastic model

In the previous section we used a deterministic model to study the interaction between prey,
predator, and parasites. It was implicitly assumed in the model that only one possible reality
can evolve under time by obeying the laws governed by the ordinary differential equations (1).
Since the process of population interaction might evolve in an indeterminacy manner, in this
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section we propose a stochastic model, a counterpart of system (2), to study population interaction.
Specifically, we will use a continuous-time Markov chain model to study the population interaction
under random effects. We refer the reader to [1,4] for stochastic models with applications to
biology.

Let x1(t), x2(t), y1(t), and y2(t) denote the random variables of the uninfected prey, infected
prey, uninfected predator, and infected predator, respectively. The time t is continuous, however,
the values of the random variables are discrete. Given the deterministic model (2), we assume for
�t sufficiently small that the transition probabilities Prob{�x1(t) = i, �x2(t) = j, �y1(t) =
k, �y2(t) = l|(x1(t), x2(t), y1(t), y2(t))} are given by

x1(t)�t + o(�t) if (i, j, k, l) = (1, 0, 0, 0)

x1(t)

[
x1(t)

K
+ (1 + β)y2(t)

]
�t + o(�t) if (i, j, k, l) = (−1, 0, 0, 0)

x1(t)y1(t)�t + o(�t) if (i, j, k, l) = (−1, 0, 1, 0)

θ

e
βx1(t)y2(t)�t + o(�t) if (i, j, k, l) = (0, 1, 0, 0)

x2(t)[γ + θ(y1(t) + y2(t))]�t + o(�t) if (i, j, k, l) = (0, −1, 0, 0)

x2(t)y1(t)�t + o(�t) if (i, j, k, l) = (0, 0, −1, 1)

d2y1(t)�t + o(�t) if (i, j, k, l) = (0, 0, −1, 0)

(d2 + α2)y2(t)�t + o(�t) if (i, j, k, l) = (0, 0, 0, −1)

(1 − S(t))�t + o(�t) if (i, j, k, l) = (0, 0, 0, 0)

o(�t) otherwise,

where S(t) = x1(t)[1 + (x1(t)/K) + (1 + β)y2(t) + (θ/e)βy2(t) + y1(t)] + x2(t)[γ + θ(y1(t)

+ y2(t)) + y1(t)] + d2y1(t) + (d2 + α2)y2(t).
Of course, there are many different stochastic models that correspond to the same deterministic

model (2), but we shall use the above formulation. Similar to the Poisson process, the random
variable for the interevent time has an exponential distribution. The resulting model is a multi-
variate process and we will not pursue the study analytically. Instead we will focus on numerical
simulations to study the stochastic process.

To simulate our model, we use the same parameter values as for the deterministic model
(2). Specifically, we choose d2 = 0.5000, α2 = 0.2000, β = 0.8000, e = 0.1000, γ = 0.2000,
and K = 5. When θ = 0.02, the deterministic model assures that both the uninfected prey and
predator can persist. This is not the case for our stochastic model. From the sample paths given
in Figure 2a we see that some uninfected prey populations do go to extinction. However, for the
sample paths provided in Figure 2b that the infected prey all become extinct. We then increase θ

to 0.55. According to our previous study on the deterministic system, it is known that both the
infected and uninfected prey and predator can persist. This is not true again for the continuous-
time Markov chain model. Although it is clear that the uninfected prey populations can survive
for the sample paths simulated in Figure 2c, it is not the case for the infected prey population as
shown in Figure 2d.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
R

ho
de

 I
sl

an
d]

 a
t 1

1:
41

 0
1 

O
ct

ob
er

 2
01

2 



Journal of Biological Dynamics 97

Figure 2. This figure plots three sample paths of the continuous-time Markov chain model with parameter values
d2 = 0.5000, α2 = 0.2000, β = 0.8000, e = 0.1000, θ = 0.2, γ = 0.2000, and K = 5. (a) and (b) plot three sample
path for x1 population size and x2 population size, respectively, when θ = 0.02. (c) and (d) plot x1 and x2 populations,
respectively, when θ = 0.55. The initial population size is (50, 1, 20, 1) for all simulations.

4. Discussion

In this manuscript we investigated a deterministic predator–prey model with an infectious disease.
Both the uninfected prey and predator can become infected and thus infectious when they interact
with infected individuals in the other species. In terms of the original parameters, we see that the
predator will become extinct if (eδ/q) < d2. This is due to the predator’s large natural death rate
which cannot be compensated by the predation. Notice that this inequality does not depend on θ .

When the above inequality is reversed and inequality (7) holds, then only the uninfected prey
and predator can persist. Observe now that θ plays a role in the persistence of the infected
populations. In particular, inequality (7) is true if θ is small when other parameter values are
kept at the same values. The left-hand side of inequality (7) increases with increasing θ . When
inequality (7) is reversed, it was showed that there is a unique interior steady state and hence the
infected populations can survive. Consequently, we conclude that the parasites are more likely to
persist if the infected prey is more likely to be preyed upon. On the other hand, since the left-hand
side of inequality (7) is a decreasing function of α1 and α2, we see that decreasing disease related
mortality for both the prey and predator populations can promote persistence of the parasites.
Therefore, the parasite cannot be too lethal in order for its survival.

Moreover, as we increase θ , the interior equilibrium becomes unstable and there is a positive
periodic solution for the system. As a result, there is a periodic outbreak of the disease in the popu-
lations. The infected population levels remain low for sometime before they reach high population
sizes. This phenomenon may cause serious problems if the prey and/or predator populations are
our natural resources.

We also formulate a stochastic model using a continuous-time Markov chain, where the time
is continuous and the random variables are discrete. No mathematical analysis is performed on
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98 S.R.-J. Jang and J. Baglama

this stochastic model. However, numerical simulations for this specific formulation conclude that
populations can always become extinct due to random effects of demography, predation, and
transmission of the disease, as compared with the circumstance when the populations can persist
in the deterministic model. The results of the stochastic model make the interaction between these
populations more unpredictable. In addition to the life strategies that evolve over time to increase
fitness for the populations, the persistence of the populations may however depend largely on
chance.
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