DECOMPOSITION METHODS FOR LARGE
LINEAR DISCRETE ILL-POSED PROBLEMS

JAMES BAGLAMA* AND LOTHAR REICHELf

Abstract. The solution of large linear discrete ill-posed problems by iterative methods continues
to receive considerable attention. This paper presents decomposition methods that split the solution
space into a Krylov subspace that is determined by the iterative method and an auxiliary subspace
that can be chosen to help represent pertinent features of the solution. Decomposition is well suited
for use with the GMRES, RRGMRES, and LSQR iterative schemes.

1. Introduction. This paper is concerned with the iterative solution of large
linear systems of equations

(1.1) Az = b, Ae R™", x € R", beR™,

with a matrix A of ill-determined rank, i.e., A has many singular values of different
orders of magnitude close to the origin. In particular, A is severely ill-conditioned
and may be singular. Matrices of ill-determined rank arise from the discretization
of ill-posed problems, such as Fredholm integral equations of the first kind with a
smooth kernel. Linear systems of equations with such a matrix are often referred to
as linear discrete ill-posed problems. If the linear system (1.1) is inconsistent, e.g.,
when m > n, then we consider the system a least-squares minimization problem.

The right-hand side b in linear discrete ill-posed problems that arise in applica-
tions typically is contaminated by an error e € R™, which may stem from measure-
ment or discretization errors. Let b denote the unknown error-free vector associated
with b, i.e.,

(1.2) b=b+e,

and assume that the linear system of equations with the unknown error-free right-hand
side,

(1.3) Az = b,

is consistent. The available linear system (1.1) is not required to be consistent.

We would like to determine a solution & of (1.3), e.g., the least-squares solution
of minimal Euclidean norm. Since the right-hand side b is not available, we seek
to determine an approximation of & by computing an approximate solution of the
available linear system of equations (1.1). A popular approach to determining an
approximation of & for large-scale linear discrete ill-posed problems is to apply a
few, say j, steps of an iterative method to (1.1). Denote the approximate solution so
obtained by x; and let ||-|| denote the Euclidean vector norm or the associated induced
matrix norm. For many linear discrete ill-posed problems, the optimal number of
iterations, denoted jop¢, and defined as the smallest integer, such that

(1.4) 1250p. — 2l =rjnzi(f)1||-’ﬂj — &[],
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is quite small. This depends on that iterates x; for j large generally are severely con-
taminated by propagated errors due to the error e in b and round-off errors introduced
during the computation of x;; see, e.g., [5, 6, 10, 12] for discussions and illustrative
computed examples. It is therefore important that the subspaces in which the iterates
z; live allow the representation of pertinent features of & already for small values of
7. These features may be jumps, spikes, or just linear increase.

This paper proposes decomposition of the linear system of equations (1.1) that
corresponds to a decomposition of the solution space into a Krylov subspace deter-
mined by a standard iterative method, such as GMRES, RRGMRES or LSQR, and a
user-supplied subspace. The latter can be chosen to allow the representation of desir-
able features of & that may be difficult to represent by a vector in a low-dimensional
Krylov subspace.

Let the span of the orthonormal columns of W € R™**¢ represent the user-chosen
linear space and introduce the orthogonal projectors Py = WW7T and PV%, =1— Py.
We use these projectors to split the computed approximate solutions x; according to

(L.5)  x; =z} +xj, x; = Pyx;, z = Py x;, j=1,2,3,....

The component ] of z; is computed by an iterative method. Since £ generally is
chosen quite small, e.g., 1 < £ < 3, we can determine mg by solving a small linear
system of equations by a direct method.

Section 2 describes decomposition methods for linear systems of equations (1.1)
with m = n, and discusses application of the GMRES and RRGMRES iterative
methods to the computation of an approximation of Pj;&. A decomposition method
for linear systems with m # n, in which an approximation of Pj;& is computed by the
LSQR iterative method, is presented in Section 3. Section 4 shows a few computed
examples and Section 5 contains concluding remarks.

2. Decomposition and GMRES-type methods. This section discusses it-
erative schemes based on the decomposition (1.5) and the application of iterative
methods of GMRES-type. We assume throughout this section that m =n in (1.1).

Our solution method uses the QR-factorization

(2.1) AW = QR,

i.e., Q € R*¢ has orthonormal columns and R € R¢*¢ is upper triangular. Since
in our applications £ is small, the factorization (2.1) can be computed quite rapidly.
We will assume that R is nonsingular. This can be secured by choosing ¢ sufficiently
small. Let Py be the orthogonal projector onto the range of AW, ie., Pg = QQT,
and let P(j = I — Pg. By using these projectors and by splitting « into Pwz and
Py analogously to (1.5), we obtain the decomposition

(2.2) PoAPwz + Po APy = Pgb,

(2.3) Py APz = Pyb

of the linear system (1.1), where we have used the fact that
(2.4) Py APy =0.
Introduce the A-weighted pseudo-inverse of Py,

Ply 4 = (I — (APw) APy,
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where (AP )t denotes the Moore-Penrose pseudo-inverse of APy ; see Eldén [8] or
Hansen [12, Section 2.3] for the definition of the A-weighted pseudo-inverse of a general
matrix. Then

L Apl
APJ, \ = PG APy,
i.e., the system of equations (2.3) formally may be considered preconditioned by the

right preconditioner PJV’ 4- Of course, PJV) 4 does not approximate the inverse or

Moore-Penrose pseudo-inverse of A in any meaningful way and therefore PIIV, 4 is not
a preconditioner in a traditional sense.

We solve the large linear system (2.3) by the GMRES or RRGMRES iterative
methods. A brief description of these methods is provided below. It follows from (2.4)
that Pg APy = Py A, and therefore we apply the iterative methods to

(2.5) Py Az" = Pgb,

i.e., we do not require the computed iterates 2 to be in the range of Py
Let 27 be a satisfactory approximate solution of (2.5). We then determine

(2.6) x = Pz

and solve (2.2) for the component  in the range of Py of the approximate solution
z; of (1.1), cf. (1.5). Thus, = = Pwx; satisfies

(2.7) Po Az, = Pob — PoAx].

This system is equivalent to the small linear system of equations
(2.8) Rz' = Q" (b— AzY),

whose solution we denote by 2. Then

(2.9) z; =Wz}
and we obtain ; from (1.5).

We conclude this section with a brief review of the GMRES and RRGMRES
iterative methods for the solution of (2.5) and comment on when to terminate the
iterations. The iterative methods are applied with initial approximate solution z§ = 0.
The jth iterate, 2z}, determined by GMRES satisfies

210 ||P5-Az9’ - Pch'b” = mineg; (P4 A,P4b) ||Pch'AZ” - Pé_b||a
2.10
z! € K;(PyA,Pgb),
where
(2.11) K, (Pg A, Pgb) = span{Pgb, Py APgb,...,(Pz Ay Pgb}

is a Krylov subspace. The standard GMRES implementation determines the Arnoldi
decomposition

(2.12) Py AVj = Vi Hji,



4 J. Baglama and L. Reichel

where V; € R™¢, V[T'V; = I, range(V;) = K;(Pg A, Pgb), and Vie; = Pgb/||Pgb]|
for i = j and i = j + 1. Here I; denotes the identity matrix of order ¢ and e; the ith
axis vector. Moreover, the matrix Hj1 ; € RUTDXJ is of upper Hessenberg form with
positive subdiagonal entries; see, e.g., Saad and Schultz [16] for details. We assume
that j is small enough so that the decomposition (2.12) with the stated properties
exists.

Substituting 2" = V;y" into the minimization problem in (2.10) and using the
Arnoldi decomposition (2.12) yields

2.13 min ||PAAViy" — PAb|| = min ||H,;. 1 9" — el||PAb]]|.
(2.13) y,,ERJ.II 2 AVy 2 bll y,,ERJ.II j+1,5Y 1[[Pg bl

Introduce the QR-factorization Hj;1,; = Q;+1Rjt1,;, where Q1 € RUFDXGHY) jg
orthogonal and R;;1,; € RUT1D>J has a leading j x j upper triangular submatrix and
a vanishing last row. Then (2.13) gives

(2.14) Jnin, IPg AVjy" — Pobll = lej 1 QF e [|IP5 -

Therefore the residual error is inexpensive to determine.

The computation of 2 requires the evaluation of j matrix-vector products with
A. For large-scale problems this is the dominant computational work when j is not
very large, as is typically the case in our applications.

The matrix A in discrete ill-posed problems generally represents a smoothing op-
erator, such as a convolution with a Gaussian. If the desired solution & of (1.3) is
known to have non-smooth features, such as jumps, then it is generally advantageous
to choose the matrix W, so that these features can be represented by a linear com-
bination of its columns. Moreover, we illustrate in Section 4 that significant increase
in accuracy sometimes also can be achieved by letting the columns of W represent
smooth functions, such as constants and linear functions.

Several criteria for when to terminate the iterations with GMRES are available,
the most reliable of which is the discrepancy principle. It requires that ||e||, or an
estimate thereof, be known, and prescribes that the iterations be terminated as soon
as an approximate solution x;, such that

(2.15) 1o — Azl < nllell;

has been found, where 1 > 1 is a user-specified constant; see [5] for a justification of
this stopping criterion.

Assume that the linear system of equations (2.7) is solved exactly. This assump-
tion is reasonable, because the solution z; is determined by solving the linear system
of equations (2.8) with a small and generally not very ill-conditioned matrix. Then
the following theorem shows that

(2.16) b — Aw;|| = ||P5b - P& A,

where 27 is defined by (2.10). Thus, the left-hand side of (2.15) can be computed in-
expensively by evaluating the right-hand side of (2.14) during the GMRES iterations.
THEOREM 2.1. Let the approzimate solution x; be given by (1.5) and assume
that (2.7) holds. Let z'j satisfy (2.10). Then (2.16) is valid.
Proof. Tt follows from (1.5) and I = Pg + Py that

16— Aayl| = llb— A} + 2|l = | Pab+ P3b — (Po A+ P§ A)(a} + )|



Decomposition methods 5

The right-hand side can be simplified using (2.7) and Pé-Aw;- = 0, which follows from
(1.5) and (2.4). Thus, we obtain

Ib— Azj|| = ||P4b — PA Az!||.

Application of (2.6) and (2.4) yields Pz Az} = Py Az and the theorem follows. O

We remark that no specific properties of GMRES are used in the proof of Theorem
2.1. Therefore (2.16) also holds for iterates z;-’ and the corresponding approximate
solutions x; determined by other iterative methods. When no estimate of ||e]| is
available, one can use an L-curve to decide when to terminate the iterations; see [6].

The computation of the approximate solution x; of (1.1) as described demands
the evaluation of £+ j + 1 matrix-vector products with the matrix A: £ evaluations are
required to determine the QR-factorization (2.1), j by GMRES, and 1 for computing
the right-hand side of (2.8).

The linear system of equations (2.5) may be inconsistent and the recursion for-
mulas for GMRES might break down before a sufficient number of iterations have
been carried out. This can be remedied by using a breakdown-free variant of GMRES
described in [15]. However, breakdown is rare and in our experience standard GMRES
performs well.

The GMRES-based decomposition method described may be considered an aug-
mentation method; the Krylov subspace generated by GMRES is augmented by the
space W = span(WW). A numerical method based on the latter approach is discussed
in [2]. Specifically, an approximate solution x; of (1.1) that solves the least-squares
problem

2.1 Az; —b|| = i Ax — ; i(A
@17)  dz-bl= _min l4z-bl, @ € K(AD)UW,

is computed by using the modified Arnoldi decomposition
(2.18) AW Verriers] = Verjr Hevjo o4,

where Viy i1 = [Q Vigregji1] € RPEHHD hags orthonormal columns, Q € R™¢ is

determined by the QR-factorization (2.1), V;.; denotes the (sub)matrix made up of

columns i through k of Viyjy1, and Viyr.eq1 = Pgb/||Pgbl|. Further,

R S

€ REHIH)X ()
0

(2.19) Heyjiaens =

where R € REX¢ is the upper triangular matrix in the QR-factorization (2.1), S €
R and H € }B(Hl) %J is of upper Hessenberg form with positive subdiagonal entries.
Then x; = [W Vit1.044]y,, where y; € R solves the least-squares problem

(2:20) ygﬂggi | Hetjir,e45Y = Vi ll-

THEOREM 2.2. In the absence of round-off errors, the iterate x; determined by
the augmented GMRES method described in [2], and outlined above, is identical to
the iterate x; determined by the GMRES-based decomposition method of the present
paper.
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Proof. Split the solution y,; of (2.20) into subvectors, commensurate with the
splitting of the matrix (2.19),

Yj <
we[4]. wer. wer

It follows from (2.19) and (2.20) that y} solves the least-squares problem

(2.21) min ||Hy" — e1[|Pybl| |
y''eRJ

and yg solves the linear system of equations
(2.22) Ry =Q"b—Sy".
Identifying the last j columns of (2.18) and using (2.19) yields

AVigrer; = QS + Veyeyjn H,
and we obtain
(2:23) PCJZ_A%H:ZH = Pch'%+1:e+j+1H = ‘713+1:e+j+1H,

where the last equality follows from the fact that the columns of 17“1: ¢+j+1 are orthog-
onal to Q. Thus, (2.12) and (2.23) are two Arnoldi decompositions of Pé-A with the
same initial vectors and with positive subdiagonal entries in the Hessenberg matrices.
It follows from the Implicit Q-Theorem, see [9, Theorem 7.4.2], that the decomposi-
tions are identical. In particular, the least-squares problems (2.13) and (2.21) have
the same solution.

Using Vit1:04j41 = Vj and S = QTAV]‘, as well as equation (2.22) to eliminate
Y, we can express the solution z; of (2.17) in the form

(2.24) z; =Wy +Viy] = WR™(QTb - QTAV;y)) + V.-

The iterate x; determined by the decomposition method of the present paper can be
written as

(2.25) x; =Wz + [T -Wwh)z],

where we have used (2.6) and (2.9). Using (2.8) to eliminate 2z’ and substituting
2% = V;yy and (2.1) into (2.25) yields

x; =WR'QT(b— AT -WWT)Vyf) + I —WWT)V;y]
=WR'Q"(b— AVy) + WRT'QTAWW V| + (I - WWT)V;yff
(226) =WR'QT(b— AV;y)) + WW'Vjy| + (I - WWT) V5.
Hence, the expressions (2.24) and (2.26) are the same, which shows the theorem. O
Thus, the augmented GMRES method described in [2] and the decomposition
method based on GMRES of the present paper are equivalent. An advantage of the

approach of the present paper is that it can easily be adapted to many iterative
solution methods.
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Range Restricted GMRES (RRGMRES) differs from GMRES in that the mini-
mization problem (2.10) is replaced by

||P5-Az;-’ - Pchb” = mingieg; (P4 A, P4 AP b) ||P(.,J2'Az" - Péb”;
2 € K (PéA, PéAPéb);

in particular, the computed iterate 2/ lives in the range of PQ'-A. This often makes
the iterates determined by RRGMRES less sensitive to the error e in b than iterates
computed by GMRES. We have found that RRGMRES typically is able to determine
a more accurate approximation of & than GMRES when the desired solution & is
smooth; see Section 4 as well as [4] for examples.

The computation of the approximate solution x; by the RRGMRES-based de-
composition method requires the evaluation of £ + j 4+ 2 matrix-vector products with
the matrix A, of which RRGMRES needs j + 2.

The decomposition method for RRGMRES may be considered an augmentation
method in which the Krylov subspace generated by RRGMRES is augmented by the
space W; cf. the related discussion on GMRES above. In the augmented RRGMRES
method discussed in [2], one seeks to compute an approximate solution z; of (1.1)
that solves the least-squares problem

2.2 Az; — bl = i Ax —b ; (A, A
@21)  |Aw;-bll=__ min Az bl @ € K;(4,AB) UW,

where W is the same as in (2.17).

THEOREM 2.3. In the absence of round-off errors, the solution x; of (2.27) is
identical to the iterate x; determined by the RRGMRES-based decomposition method
of the present paper.

Proof. The result can be established similarly as Theorem 2.2. O

3. Decomposition and LSQR. In this section we allow m # n in (1.1) and
discusses how decomposition can be combined with the LSQR method by Paige and
Saunders [13, 14]. LSQR is an implementation of the conjugate gradient method
applied to the normal equations

(3.1) AT Az = AT

associated with (1.1); see Bjorck [3, Section 7.6] for a recent discussion of the method.
We would like to determine an approximate solution, x;, of the least-squares
problem

3.2 in |[Az — b

(3:2) Inin || I,

such that x; is an accurate approximation of &. Let W be the same matrix as in
Section 2 and determine its QR-factorization (2.1). Similarly as we derived the linear

systems of equations (2.2) and (2.3) from (1.1), we split the minimization problem
(3.2) to obtain

(3.3) min |PoAPwx + PoAPyx — Pobl|,

(3.4) min |Pg APy — Pgb|.
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Note that the problem (3.3) is equivalent to the small linear system of equations (2.8).
This suggests that (3.2) be solved as follows. We first determine an approximate
solution 2 of

(3.5) zglei]gn |[Py Az" — Pyb||

by j iterations with LSQR, where we use the initial approximate solution z§ =
The minimization problem (3.5) differs from (3.4) only in that the computed solution
is not required to be in the range of Pj;. Compute x} using (2.6), solve (2.8) for 2,
determine z; by (2.9), and finally form the approximate solution z; = x; + @ of
(3.2).

LSQR allows inexpensive computation of the norm of the residual error ||chb —
Pg Az]f|| for each iterate zf. The equality (2.16) is valid also for the iterates 2/ and
x; determined by the method of this section. Therefore the norms ||Pgzb — Py Az} ||
can be used to decide when to terminate the iterations in the same way as for GMRES
and RRGMRES in Section 2.

The iterate 2/ lives in the Krylov subspace K; (AT Pg A, Pz ATb). Tts computa-
tion requires the evaluation of j matrix-vector product with each one of the matrices
A and AT. Therefore the computation of x; requires a total of 2j + £+ 1 matrix-vector
product evaluations.

An augmented conjugate gradient method for the solution of (3.1) based on the
CGLS algorithm has been described in [7]; see Bjorck [3, Section 7.4] for a discussion
of CGLS. This section and Section 2 illustrate that the decomposition framework of
the present paper is quite versatile and provides a unified approach to augmentation
of Krylov subspace iterative methods.

4. Numerical examples. We present two computed examples that illustrate
the performance of the methods described. The desired solution & is available for
both examples, and we use it to determine the error-free right-hand side

(4.1) b= A&

of the linear system (1.3). The error vector e has normally distributed entries with
zero mean and is scaled so that the contaminated right-hand side b, defined by (1.2),
has relative error

(4.2) llell/l1bfl = 1107,

All computations were carried out in Matlab with machine epsilon 2 - 1076, The
parameter 7 in (2.15) is set to unity in all examples.
Example 4.1. The Fredholm integral equation of the first kind

sinh(s)

(4.3) /7r exp(s cos(t))z(t)dt = 2 , 0
o s

IN

™
s S 55
discussed by Baart [1] is frequently used to illustrate the performance of numerical
methods for the solution of ill-posed problems. We used the Matlab code baart from
Regularization Tools [11] for the discretization of (4.3) by a Galerkin method with or-
thonormal box functions as test and trial functions, and determined the nonsymmetric
matrix A € R?90%200 5nd the scaled discrete approximation & € R2%° of the solution
z(t) = sin(t) of (4.3). The matrix A is of ill-determined rank; it has condition number
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Standard iterative methods

RRGMRES LSQR
i @ —all [ 16— Azl | [[@—=,] | [b— As,]]
1] 259-101° | 1.04-10%0 | 7.88-101° | 4.96-101°
211.31-10t° | 9.48-1072 | 6.53-10"' | 6.13-1072
316.82-1072 4.18-10"2 | 1.55-10~' 4.18-1072
4(1.18-10M° | 4.15-1072 | 9.90-10"! | 4.15-1072
516.60-10T° | 4.15-1072 | 5.26-10%Y | 4.15-102

Decomposition methods with W given by (4.4)

RRGMRES LSQR
i @ —all [ 16— Azl | [@—=,] | [b— As,]]
1[589-10T[571-102 [ 5.65-10 ' | 5.65-10 2
21499-10"2 4.18-1072 | 1.43-10"" 4.18-1072
311.19-10%° | 4.15-1072 | 9.79-10~" | 4.15-102
41695-10M° | 415-1072 | 5.32-107° | 4.15-1072
5| 1.11-10%! | 4.15-1072 | 3.16- 10" | 4.15-1072

TABLE 4.1
Ezample 4.1. Error and residual error for computed iterates x;. Values for iterate determined
by the discrepancy principle (2.15) underlined; ||e|| = 4.20 - 1072.

k(A) = 5.2-10'8, where x(A) = ||A]||A]|. Let ¢ = [1,1,...,1]T € R? define
& = & + ¢, and let b be given by (4.1). The error vector e € R2% was determined by
the Matlab random number generator randn with seed 99 and scaled to satisfy (4.2).
Then ||e|| = 4.20 - 10~2. The right-hand side vector b in (1.1) is determined by (1.2).

Table 4.1 reports results for (standard) RRGMRES and LSQR, as well as for
decomposition methods based on these iterative methods with

_ 1 T 200
(4.4) w m[l,l,...,l] € R,
The table displays the residual error (2.16) and the error ||& — a;|| for 1 < j < 5.
The underlined values in the table mark the iterates determined by the discrepancy
principle (2.15). These iterates approximate & the best. They are displayed in Figure
4.1, which also shows the exact solution & of the error-free problem (1.3). The table
and figure show the decomposition methods to yield better approximations of & than
the standard iterative methods.

We remark that the success of decomposition with a given matrix W depends
on the form of the solution. For instance, when the vector ¢ is set to zero, the
decomposition methods yield only minor improvements compared with the standard
iterative methods. GMRES does not perform as well as RRGMRES for the present
example, and we therefore do not report results for the former method. O

Example 4.2. Consider the Fredholm integral equation of the first kind

(4.5) /01 k(s,t)z(t)dt = exp(s) + (1 —e)s — 1, 0<s<1,

where

k(s’t):{ :((t—l), s < t,

s—1), s> 1t.
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Standard LSQR LSQR with (4.4)

Fi1c. 4.1. Ezample 4.1. Approzimate solutions x; determined by the discrepancy principle
(2.15) using standard and augmented iterative methods (continuous curves) and the ezact solution
& of the error-free system (1.3) (dash-dotted curves).

We discretized the integral equation by a Galerkin method with orthonormal box
functions as test and trial functions using the Matlab program deriv2 from Regular-
ization Tools [11] and obtained the symmetric indefinite matrix A € R*00%400 and the
scaled discrete approximation & € R0 of the solution z(t) = exp(t) of (4.5). The
error-free right-hand side vector is given by (4.1). The error vector e € R*° was
determined by the Matlab random number generator randn with seed 111 and scaled
to satisfy (4.2). Then ||e|]| = 1.54-10~%. The right-hand side vector b in (1.1) is given
by (1.2).
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Standard iterative methods
GMRES RRGMRES LSQR
i | & -l [1b—Az,][ | [1&— =, | 16— A=,]| | & —a;[ [ [b— Aa,]]
1 [860-10T[9.24-10%[927-10 ' | 1.10-102 [ 9.27-10 T | 1.10-10 2
2 |638-107' | 326-107% | 7.71-107' | 5.07-1073 | 7.81-10"' | 5.22-1073
3 1505-107' | 9.45-10* | 6.00-10~' | 1.46-1073 | 6.12-10"' | 1.54-1073
4 |4.07-107' | 3.78-10"* | 495-10" | 6.94-10* | 5.17-10"" | 8.24-10*
5 1370-1071 | 240-107* | 443-10°' | 3.98-10* | 468-10"! | 4.67-10*
6 |361-107' | 1.75-107* | 3.83-10"' | 2.37-107* | 4.08-10"' | 2.81-10~*
7 | 414-1071 | 1.57-107% | 346-101 | 1.89-10"* | 3.80-10"! | 2.25-10¢
8 | 5.22-10~' 1.51-10~* | 3.19-10"' | 1.67-10* | 3.47-10"' | 1.82-10*
9 | 7.74-107' | 1.47-107* | 2.91-10"' | 1.57-10* | 3.22-10"! | 1.68-10*
10 | 1.37-101° | 1.43-10"% | 2.78-10"" 1.53-10"* | 3.04-10"' | 1.60-10"*
11 | 2.22-10%° | 1.40-10~* | 2.74-10~" | 1.51-10~* | 2.87-10~"' | 1.55-10~*
12 | 3.80-10%° | 1.35-10* | 2.93-10~"' | 1.49-10~* | 2.79-10~' 1.53-10~*
Decomposition methods with W given (4.6)
GMRES RRGMRES LSQR
i | &=l [1b—Aw;[[ [ & —=,] | 16— A=,][ | [&—ay] | [b— Az,
1 [470-1072 | 1.77-100% [ 443-1072 | 1.77-107% [ 1.14-1072 | 1.58 - 1071
2 | 649-102 1.54-10~* | 3.30-10"2 | 1.55-10~* | 8.82-10~3 | 1.55-10¢
3 11.29-107" | 1.52-107* | 2.86-10"2 1.54-10~* | 3.08-10~3 1.54-10"*
4 1230-10"" | 1.51-107* | 2.62-10~2 | 1.54-10~* | 3.80-10"3 | 1.54-10~*
5 | 740-10~' | 1.47-10* | 2.21-1072 | 1.54-10"* | 5.61-1073 | 1.54-10~*
TABLE 4.2

Ezample 4.2. Error and residual error for computed iterates x;. Values for iterate determined
by the discrepancy principle (2.15) underlined; ||e|| = 1.54 - 10~4.

Define W € R0%2 by QR-factorization of

11
1 2

(4.6) w=|1 3 |er>2 W =wRg,
1 400

i.e., W has orthonormal columns and R € R?*2 is upper triangular.

Table 4.2 displays results obtained with (standard) GMRES, RRGMRES, and
LSQR, as well as with decomposition methods defined by W and these iterative
methods. The table shows the residual errors ||b — Ax,|| and the errors ||& — ;||
for several values of j. The values for the iterates determined by the discrepancy
principle are underlined. Figures 4.2 and 4.3 show the approximate solutions defined
by the underlined iterates as well as &. The decomposition methods are seen to
determine better approximations of & with fewer matrix-vector product evaluations
with the matrices A and AT than the standard iterative methods. The LSQR-based
decomposition method is seen to furnish the best approximation of . We have found
that when Z is the discretization of a smooth function, RRGMRES- and LSQR-based
decomposition methods often yield better approximations of & than the GMRES-
based decomposition method using the same matrix W. This is the case in the
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F1G. 4.2. Ezample 4.2. Approzimate solutions x; determined by the discrepancy principle
(2.15) using standard GMRES and RRGMRES as well as GMRES- and RRGMRES-based de-
composition methods (continuous curves), and the exact solution & of the error-free system (1.3)
(dash-dotted curves).

present example. Note that the discrepancy principle does not always determine the
iterate ;. ., cf. (1.4), that best approximates &. O

In both examples above, the columns of the matrix W represent smooth functions.
An example where W is used to represent a discontinuity and the GMRES-based
iterative method performs well is reported in [2].

5. Conclusion and future work. Decomposition provides a unified approach
to augmentation methods for the solution of linear discrete ill-posed problems. The
present paper discusses applications of decomposition to several iterative methods.
Applications to direct solution methods are also possible and will be discussed else-
where.
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4 T
— lterate X, — lterate X
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Fi1G. 4.3. Ezample 4.2. Approzimate solutions x; determined by the discrepancy principle
(2.15) using the standard LSQR method and an LSQR-based decomposition method (continuous
curves), and the ezact solution & of the error-free system (1.3) (dash-dotted curves).
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