Hybrid Iterative Refined Restarted Lanczos
 Bidiagonalization Methods

James Baglama • Vasilije Perović . Jennifer Picucci

Received: date / Accepted: date

Abstract

Presented are new hybrid restarted Lanczos bidiagonalization methods for the computation of a few of the extreme singular triplets of very large matrices. Restarting is carried out either by a thick-restarted scheme with Ritz vectors or explicitly with iterative refined Ritz vectors. Several criteria are used to determine which restarted process is to be used. Also presented, are MATLAB codes that implement the described algorithms along with numerous examples demonstrating our methods are competitive with other available routines.

Keywords (Partial) Singular value decomposition • Iterative method.
Large-scale computation • Refined Ritz • Lanczos bidiagonalization
Mathematics Subject Classification (2010): 65F15, 65F50, 15A18

1 Introduction

The singular value decomposition (SVD) of matrix $A \in \mathbb{R}^{\ell \times n}(\ell \geq n)^{1}$ is a factorization of the form

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{1}
\end{equation*}
$$

where $U=\left[u_{1}, \ldots, u_{n}\right] \in \mathbb{R}^{\ell \times n}$ and $V=\left[v_{1}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}$ have orthonormal columns and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right) \in \mathbb{R}^{n \times n}$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$.

[^0]The σ_{j} 's are the singular values of A, while u_{j} 's and v_{j} 's are the corresponding left and right singular vectors of A, respectively. Collectively, $\left\{\sigma_{j}, u_{j}, v_{j}\right\}$ is referred to as a singular triplet of A. From (1), for $0<s \leq n$, we have

$$
\begin{equation*}
A V_{s}=U_{s} \Sigma_{s}, \quad A^{T} U_{s}=V_{s} \Sigma_{s} \tag{2}
\end{equation*}
$$

where $\Sigma_{s}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right) \in \mathbb{R}^{s \times s}, U_{s}=\left[u_{1}, \ldots, u_{s}\right] \in \mathbb{R}^{\ell \times s}$, and $V_{s}=$ $\left[v_{1}, \ldots, v_{s}\right] \in \mathbb{R}^{n \times s} ;$ when $s<n$ we refer to the factorization (2) as a partial singular value decomposition of A, or s-PSVD for short.

The primary focus of this paper is on computing a small number of singular triplets, let's say k, corresponding to the largest singular values and associated vectors, while using as little memory as possible. In other words, we are interested in computing $\left\{\sigma_{j}, u_{j}, v_{j}\right\}_{j=1}^{k}$ such that

$$
\begin{equation*}
A v_{j}=\sigma_{j} u_{j}, \quad A^{T} u_{j}=\sigma_{j} v_{j}, \quad j=1,2, \ldots, k \tag{3}
\end{equation*}
$$

Some of the earliest work in this direction can be traced to the landmark paper by Golub and Kahan [10], where the authors showed how singular triplets can be computed efficiently and in a numerically stable way by what is now known as the Golub-Kahan-Lanczos (GKL) bidiagonalization procedure.

Today, SVD is one of the main computational methods with numerous applications, e.g., dimension reduction, Principal Component Analysis (PCA) [24], genomics $[1,3]$, data mining, data visualization, machine learning, and pattern recognition [8,31]. Matrices arising from these applications are often very large, sparse and only accessible via matrix-vector routines which makes it impractical for the computation of all singular triplets. Fortunately, with these matrices one is typically interested in computing only a few of the largest (or smallest) singular triplets - this has spurred a considerable amount of research and software development, see e.g., $[4,5,9,12,20,21,25,26,27,28,41]$ and the references therein.

One of the features shared by many of the referenced routines is the vital role played by the GKL procedure [10]. Recall that for some starting unit vector p_{1} (and $q_{1}:=A p_{1}$), this procedure creates orthonormal bases for the Krylov subspaces,

$$
\begin{align*}
& \mathbb{K}_{m}\left(A^{T} A, p_{1}\right)=\operatorname{span}\left\{p_{1}, A^{T} A p_{1},\left(A^{T} A\right)^{2} p_{1}, \ldots,\left(A^{T} A\right)^{m-1} p_{1}\right\} \\
& \mathbb{K}_{m}\left(A A^{T}, q_{1}\right)=\operatorname{span}\left\{q_{1}, A A^{T} q_{1},\left(A A^{T}\right)^{2} q_{1}, \ldots,\left(A A^{T}\right)^{m-1} q_{1}\right\} \tag{4}
\end{align*}
$$

using only matrix-vector products with A and A^{T} while avoiding explicitly creating the matrices $A^{T} A$ and $A A^{T}$. This makes the process ideal for very large problems. The GKL procedure at step m yields the m-GKL factorization,

$$
\begin{equation*}
A P_{m}=Q_{m} B_{m} \tag{5}
\end{equation*}
$$

$A^{T} Q_{m}=P_{m} B_{m}^{T}+f e_{m}^{T}=\left[\begin{array}{ll}P_{m} & p_{m+1}\end{array}\right]\left[\begin{array}{c}B_{m}^{T} \\ \beta_{m} e_{m}^{T}\end{array}\right]$,
where $P_{m}=\left[p_{1}, \ldots, p_{m}\right] \in \mathbb{R}^{n \times m}$ and $Q_{m}=\left[q_{1}, \ldots, q_{m}\right] \in \mathbb{R}^{\ell \times m}$ have orthonormal columns which form bases for Krylov subspaces (4) respectively,
the residual vector $f \in \mathbb{R}^{n}$ satisfies $P_{m}^{T} f=0, \beta_{m}=\|f\|$, and $p_{m+1}=f / \beta_{m}$. Further, e_{m} is the $m^{\text {th }}$ axis vector of appropriate dimension and

$$
B_{m}:=\left[\begin{array}{cccccc}
\alpha_{1} \beta_{1} & & & & & \tag{7}\\
& \alpha_{2} & \beta_{2} & & & \\
& \alpha_{3} & \beta_{3} & & & \\
& & & \ddots & \ddots & \\
& & & & \ddots & \\
& & & & \beta_{m-1} \\
& & & & & \alpha_{m}
\end{array}\right] \in \mathbb{R}^{m \times m}
$$

is an upper bidiagonal matrix. Approximations of the singular triplets of A can be obtained from the singular triplets of B_{m}. Observe that when the norm of the residual vector f is small, the singular values of B_{m} are close to the singular values of A (exact when f vanishes) and the associated singular vectors are computed using the basis vectors of the Krylov subspaces, see Section 2 for details. However, these approximations are typically poor for modest values of m, hence either requiring m to be increased or the starting vector p_{1} to be modified (explicitly or implicitly) and the GKL process restarted. Considering that the matrix A is of large scale and assuming prohibitive memory limitations, increasing m to a suitable value to get acceptable approximations is not an option. Thus, much of the research, including this paper, revolves around developing different restarting schemes for the GKL process. Note that there are already several notable routines that do this [4,5,20,21,25,26], particularly the thick-restarted GKL routine in [4] which plays a key role in this paper.

In [4], Baglama and Reichel exploited the mathematical equivalence for symmetric eigenvalue computations of the implicitly restarted Arnoldi (Lanczos) method of Sorensen [35] and the thick-restarting scheme of Wu and Simon [40], as described in [29], and applied it to a restarted GKL procedure. Their thick-restarted GKL routine turns out to be a simple and computationally fast method for computing a few of the extreme singular triplets of large matrices that is less sensitive to propagated round-off errors; for a brief review of this scheme see Section 2. However, the routine struggles when the dimension, m, of the Krylov subspaces is memory limited and kept relatively small in relationship to the number of desired singular triplets k, see the examples in Section 5. Recently, in the context of symmetric eigenvalue computation, the authors overcame this memory restriction by creating a hybrid restarted Lanczos method that combines thick-restarting with Ritz vectors with a new technique, iteratively refined Ritz vectors [2]. The thick-restarted part was carried out as described in [40] and when certain criteria were met, the routine switched to restarting with a linear combination of iteratively refined Ritz vectors. In [2], the authors showed that the scheme of thick-restarting of Wu and Simon was not available with refined or iteratively refined Ritz vectors. Furthermore, in [2] an alternate scheme was introduced in which, based on the relationships first proposed by Sorensen [35] and later outlined in detail by Morgan [29], the iteratively refined Ritz vectors are linearly combined and then used to restart the process. The constants were chosen in such a way
that the linear combination of the iteratively refined Ritz vectors resembles a restart, in a somewhat asymptotic sense, of thick-restarting, see [2, Sec. 6] for details.

It is well-known that the refined Ritz vectors can provide better eigenvector approximations than the Ritz vectors, see [18,22] for details. But in a restarted scheme, "better" approximation is only a part of the overall need and an efficient restarting scheme is also required. One approach was given in [16], where "refined" shifts are used in the implicitly restarted Arnoldi method. In the context of SVD, this approach was further extended [20,21] resulting in an implicitly restarted GKL procedure for computing singular triplets. In this paper, we present another approach where we extend the restarted hybrid iterative refined scheme [2] to the GKL procedure for computing singular triplets.

In the context of the symmetric eigenvalue problem, the authors in [2] consider an iterative refined Ritz scheme in which the refined process is repeated until convergence. This process has the benefit of eliminating part of the refined Ritz residuals and aiding in the ability to create a linear combination to resemble thick-restarting, all while producing a "smaller" norm. A brief review of the iterative refined Ritz scheme is provided in Section 3 though for a thorough discussion and results we refer the reader to [2].

To make the connection between the symmetric eigenvalue problem and the SVD of $A \in \mathbb{R}^{\ell \times n}$ more explicit, consider the matrices

$$
A^{T} A \in \mathbb{R}^{n \times n} \quad \text { and } \quad C=\left[\begin{array}{cc}
0 & A \tag{8}\\
A^{T} & 0
\end{array}\right] \in \mathbb{R}^{(\ell+n) \times(\ell+n)} .
$$

We refer to $A^{T} A$ as the normal matrix or system and C as the augmented matrix or system. The eigenvalues of $A^{T} A$ are the squares of singular values of A, while the associated eigenvectors of $A^{T} A$ are the corresponding right singular vectors of A, i.e., $A^{T} A v_{j}=\sigma_{j}^{2} v_{j}$. When $\sigma_{j} \neq 0$, the left singular vectors can be computed as $u_{j}=\left(1 / \sigma_{j}\right) A v_{j}$. In the case of the augmented system C, its eigenvalues are $\pm \sigma_{j}$ as well as $\ell-n$ zero eigenvalues. The eigenvectors of C associated with $\pm \sigma_{j}$ are $\frac{1}{\sqrt{2}}\left[u_{j} ; \pm v_{j}\right]$, where $\left\{\sigma_{j}, u_{j}, v_{j}\right\}$ is a singular triplet of A.

Multiplying equation (5) from the left by A^{T} produces the Lanczos tridiagonal decomposition of the normal matrix $A^{T} A$, namely

$$
A^{T} A P_{m}=P_{m} B_{m}^{T} B_{m}+\alpha_{m} f_{m} e_{m}^{T}=\left[\begin{array}{ll}
P_{m} & p_{m+1}
\end{array}\right]\left[\begin{array}{c}
B_{m}^{T} B_{m} \tag{9}\\
\alpha_{m} \beta_{m} e_{m}^{T}
\end{array}\right] .
$$

Similarly, in the case of matrix C, after performing $2 m$ steps of the standard Lanczos algorithm with the starting vector $\left[0 ; p_{1}\right] \in \mathbb{R}^{\ell+n}$ we have a $2 m \times 2 m$ tridiagonal projection matrix, which when followed by an odd-even permutation gives the following Lanczos factorization [11, Sec. 10.4.3] [25]

$$
\left[\begin{array}{cc}
0 & A \tag{10}\\
A^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
Q_{m} & 0 \\
0 & P_{m}
\end{array}\right]=\left[\begin{array}{ccc}
Q_{m} & 0 & 0 \\
0 & P_{m} & p_{m+1}
\end{array}\right]\left[\begin{array}{cc}
0 & B_{m} \\
B_{m}^{T} & 0 \\
\beta_{m} e_{m}^{T} & 0
\end{array}\right] .
$$

Considering the Lanczos factorization relationships (9) and (10), the results and properties related to the hybrid iterative refined Ritz scheme in [2] are carried over to the methods developed in the subsequent sections. Although our development is focused on the largest singular values, it can be applied to computing the smallest singular values and associated vectors.

The paper is organized as follows. The thick-restarted scheme with Ritz vectors is reviewed in Section 2 while a new development of iteratively refined Ritz vectors computed either on the normal system (9) or the augmented system (10) can be found in Section 3. In Section 4, we describe our new hybrid methods and present two algorithms for computing singular triplets. Numerical examples are presented in Section 5 followed by conclusions in Section 6.

Throughout this paper $\|\cdot\|$ denotes the Euclidean vector norm or the associated induced matrix norm. I_{k} is used to denote the $k \times k$ identity matrix while $I_{k_{1}, k_{2}}$, with $k_{1} \geq k_{2}$, denotes the first k_{2} columns of $I_{k_{1}}$; when the size is clear from the context we simply write I. When useful and for ease of presentation we utilize MATLAB's syntax for constructing block matrices. An expression of the form $\xi:=\eta$ (resp., $\xi=: \eta$) is used to denote that ξ is defined to be equal to η (resp., η is defined to be equal to ξ). In order to distinguish among numerous SVD computations and to help the reader, throughout the paper we adopt the convention that superscripts $(r z),(r f-\star)$, and (it $-\star$) correspond to the computations involving Ritz, refined Ritz, and iteratively refined Ritz values/vectors, respectively; here $\star \in\{n, a\}$ denotes that (iteratively) refined Ritz are computed with respect to either the normal or the augmented systems (8). Finally, when a formula is developed and used in different settings, we use a "generic" superscript (..) (see Sections 2-3).

2 Thick-restarted GKL process with Ritz vectors

In order to establish the notation, as well as for the sake of completeness, we briefly review the method of thick-restarting with Ritz vectors. We note that, although not presented here and can be used in our scheme, thick-restarting can also be carried out with harmonic Ritz vectors, see [4] for a thorough discussion and details.

The starting point for thick-restarting is the observation that once the m GKL factorization (5)-(6) of A is computed, then singular values of A can be approximated by singular values of B_{m}. Let the s-PSVD of B_{m} from (7) be

$$
\begin{equation*}
B_{m} V_{s}^{(\mathrm{rz})}=U_{s}^{(\mathrm{rzz})} \Sigma_{s}^{(\mathrm{rz})}, \quad B_{m}^{T} U_{s}^{(\mathrm{rz})}=V_{s}^{(\mathrm{rz})} \Sigma_{s}^{(\mathrm{rz})} \tag{11}
\end{equation*}
$$

where $U_{s}^{(\mathrm{rz})}=\left[u_{1}^{(\mathrm{rz})}, \ldots, u_{s}^{(\mathrm{rz})}\right] \in \mathbb{R}^{m \times s}$ and $V_{s}^{(\mathrm{rz})}=\left[v_{1}^{(\mathrm{rz})}, \ldots, v_{s}^{(\mathrm{rz})}\right] \in \mathbb{R}^{m \times s}$ have orthonormal columns and $\Sigma_{s}^{(\mathrm{rz})}=\operatorname{diag}\left(\sigma_{1}^{(\mathrm{rz})}, \ldots, \sigma_{s}^{(\mathrm{rz})}\right) \in \mathbb{R}^{s \times s}$ such that $\sigma_{1}^{(\mathrm{rz})} \geq \sigma_{2}^{(\mathrm{rz})} \geq \cdots \geq \sigma_{s}^{(\mathrm{rz})} \geq 0$. Define $\tilde{P}_{s}:=P_{m} V_{s}^{(\mathrm{rz})}$ and $\tilde{Q}_{s}:=Q_{m} U_{s}^{(\mathrm{rz})}$, where P_{m} and Q_{m} are as in (5) and (6). Then from (5), (6), and (11) it follows that

$$
\begin{equation*}
A \tilde{P}_{s}=A P_{m} V_{s}^{(\mathrm{rz})}=Q_{m} B_{m} V_{s}^{(\mathrm{rz})}=Q_{m} U_{s}^{(\mathrm{rz})} \Sigma_{s}^{(\mathrm{rz})}=\tilde{Q}_{s} \Sigma_{s}^{(\mathrm{rr})}=: \tilde{Q}_{s} \tilde{B}_{s} \tag{12}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
A^{T} \tilde{Q}_{s}=A^{T} Q_{m} U_{s}^{(\mathrm{rrz})} & =P_{m} B_{m}^{T} U_{s}^{(\mathrm{rz})}+f e_{m}^{T} U_{s}^{(\mathrm{rzz})}=P_{m} V_{s}^{(\mathrm{rz})} \sum_{s}^{(\mathrm{rz})}+f\left(e_{m}^{T} U_{s}^{(\mathrm{rzz})}\right), \\
& =\left[\tilde{P}_{s} p_{s+1}\right]\left[\frac{\Sigma_{s}^{(\mathrm{rz})}}{\rho_{1} \ldots \rho_{s}}\right]=:\left[\tilde{P}_{s} p_{s+1}\right] \tilde{B}_{s, s+1}^{T} \tag{13}
\end{align*}
$$

where $p_{s+1}=f /\|f\|$ and $\rho_{j}=\|f\| U_{s}^{(\mathrm{rz})}(m, j)$. Note that the pair of factorizations (12)-(13) can be extended with p_{s+1} as the starting vector to obtain a new factorization similar to the m-GKL factorization (5)-(6); the noted difference is in the structure of B_{m} which is given by

$$
B_{m}=\left[\begin{array}{cccc}
{\left[\tilde{B}_{s, s+1}\right]} & & & 0 \tag{14}\\
\alpha_{s+1} & \beta_{s+1} & \\
& \ddots & \ddots & \\
0 & & \ddots & \beta_{m-1} \\
0 & & & \alpha_{m}
\end{array}\right] \in \mathbb{R}^{m \times m} .
$$

Remark 1 The pairs of factorizations (5)-(6) (with B_{m} as in (7) or (14)) and (12)-(13) play a central role in this paper. As such, throughout the rest of this paper, we refer to (12)-(13) and (5)-(6) as an s-GKL and an m-GKL factorizations, respectively. Note that due to the structure of matrices $\tilde{B}_{s}(12)$ and $\tilde{B}_{s, s+1}(13)$, the pair (12)-(13) is not a GKL factorization in the classical sense, though it can be transformed into one [38]. The algorithmic details for computation of the factorizations (5)-(6) and (12)-(13) are standard in the literature - e.g., see [4, Algorithm 2.1] and the subsequent discussion regarding different reorthogonalization strategies.

Once the m-GKL factorization (5)-(6) is computed, the s-PSVD factorization of B_{m}, with $k \leq s<m$, can be used to initially approximate k singular triplets $\left\{\sigma_{j}, u_{j}, v_{j}\right\}$ of $A, j=1, \ldots, k$. Depending how good these approximations are, one can restart this process by first computing the s-GKL factorization (12)-(13) and extending it to the m-GKL (5)-(6) with B_{m} as in (14), until convergence.

We use the notation $\left\{\sigma_{j}^{(. .)}, Q_{m} u_{j}^{(.)}, P_{m} v_{j}^{(. .)}\right\}$to denote an approximation to the k desired singular triplets of A, where $\sigma_{j}^{(. .)}, u_{j}^{(. .)}$, and $v_{j}^{(. .)}$are taken from the methods described in this paper. For example, when using Ritz values and vectors we write

$$
\begin{equation*}
\left\{\sigma_{j}^{(. .)}, Q_{m} u_{j}^{(. .)}, P_{m} v_{j}^{(. .)}\right\}=\left\{\sigma_{j}^{(\mathrm{rz})}, Q_{m} u_{j}^{(\mathrm{rz})}, P_{m} v_{j}^{(\mathrm{rz})}\right\} \tag{15}
\end{equation*}
$$

The convergence is established by using the following residual equation that is derived from the Lanczos factorization (10),

$$
\begin{equation*}
\operatorname{res} A u g_{j}^{(. .)}=\sqrt{\left\|B_{m} v_{j}^{(. .)}-\sigma_{j}^{(. .)} u_{j}^{(. .)}\right\|^{2}+\left\|B_{m}^{T} u_{j}^{(. .)}-\sigma_{j}^{(. .)} v_{j}^{(. .)}\right\|^{2}+\left(e_{m}^{T} u_{j}^{(. .)}\right)^{2} \beta_{m}^{2}}, \tag{16}
\end{equation*}
$$

where $\beta_{m}=\|f\|$. Note that (16) can be simplified when using Ritz approximation (15) to resAug $g_{j}^{(\mathrm{rz})}=\left|e_{m}^{T} u_{j}^{(\mathrm{rzz})}\right| \beta_{m}$. Likewise, a residual equation can be computed from the Lanczos factorization (9)

$$
\operatorname{resNor}_{j}^{(. .)}=\sqrt{\left\|B_{m}^{T} B_{m} v_{j}^{(. .)}-\left(\sigma_{j}^{(. .)}\right)^{2} v_{j}^{(. .)}\right\|^{2}+\left(\alpha_{m} e_{m}^{T} v_{j}^{(. .)}\right)^{2} \beta_{m}^{2}} .
$$

Note that if $B_{m} v_{j}^{(. .)}=\sigma_{j}^{(. .)} u_{j}^{(. .)}$, then resNor ${ }_{j}^{(. .)}=\sigma_{j}^{(. .)} r e s A u g_{j}^{(. .)}$. Finally, independent of the restarted scheme used, convergence of an approximate triplet is tested via (16) and the condition

$$
\begin{equation*}
\text { res } A u g_{j}^{(. .)} \leq \text {tol } \cdot\|A\|, \tag{17}
\end{equation*}
$$

where $t o l$ is a user specified tolerance and $\|A\|$ is approximated by the largest singular value of B_{m} over all iterations.

3 Refined and Iterative Refined Ritz vectors

In 1997, Jia proposed to use refined Ritz vectors in place of Ritz vectors as eigenvector approximations of a matrix M [15]. More specifically, for a given approximate eigenvalue μ_{j} of M, Jia's method looks to minimize $\left\|M z_{j}-\mu_{j} z_{j}\right\|$ for a unit vector z_{j} from a given subspace \mathcal{W}, i.e.,

$$
\begin{equation*}
\min _{z_{j} \in \mathcal{W},\left\|z_{j}\right\|=1}\left\|M z_{j}-\mu_{j} z_{j}\right\| . \tag{18}
\end{equation*}
$$

In [15] it was shown that on the subspace \mathcal{W} an approximate eigenpair using the refined Ritz vector produced a "smaller" residual norm than an eigenpair approximation with the Ritz pair. Since then, the notion of "refined vectors" has produced a significant amount of research in many directions, see e.g., [2, $13,14,16,17,18,19,20,21,22,23,25,30]$ and references therein.

More recently, in [2] we introduced the idea of iterative refined Ritz values/vectors for the symmetric eigenvalue problem, where the approximate eigenvalue in the refined scheme is replaced with the latest computed refined Ritz value until convergence.

Through numerical examples in [2] it was demonstrated that when memory was limited and only iterative refined Ritz vectors were used to restart the method there was potential for either slow or no convergence. Similar behavior is also observed in this context, see Example 1. As a way to overcome these challenges, a hybrid method was developed that uses thick-restarted with Ritz vectors and under certain criteria it restarts with a linear combination of iterative refined Ritz vectors.

In this paper, we extend the idea of iterative refined values/vectors to the GKL process and develop new hybrid schemes for computing singular triplets. Considering the relationships of the Lanczos factorizations (9) and (10) and symmetric matrices $A^{T} A$ and $C=\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]$, respectively, we were able to leverage multiple results from [2], though still several nontrivial adaptations were required (see Sections 3.1-3.2). There are several refined schemes as applied
to the matrix C that have been considered, e.g., [20,21]. More specifically, the refined Ritz scheme in [20] uses the lower bidiagonal Lanczos process [32] while the scheme in [21] utilizes the GKL process and computes refined harmonic Ritz values/vectors using the augmented system (10). Both schemes $[20,21]$ implemented restarting by utilizing the refined process to gain "shifts" that are then used in an implicitly restarted GKL algorithm. Other implicitly restarted GKL methods worth mentioning include [25] where the authors utilized the lower bidiagonal Lanczos process on the related system $A A^{T}$ while using Ritz or harmonic Ritz values as "shifts", and the method in [5] that used Leja points as "shifts" from the normal equations (9). What differentiates work in this paper from these methods, is that our primary focus is not on computing "shifts" but rather on a hybrid scheme that restarts the GKL process either through thick-restarting with Ritz or explicitly restarting with a linear combination of iterative refined Ritz vectors.

3.1 Refined and Iterative Refined on normal system

Our development of the iterative refined Ritz values/vectors naturally starts with the normal system (9). To that end, let $M=A^{T} A$ and $\mathcal{W}=\mathbb{K}_{m}\left(A^{T} A, p_{1}\right)$ in equation (18) and define

$$
T_{m+1, m}:=\left[\begin{array}{c}
B_{m}^{T} B_{m} \tag{19}\\
\alpha_{m} \beta_{m} e_{m}^{T}
\end{array}\right] \in \mathbb{R}^{(m+1) \times m}
$$

For each approximate eigenvalue μ_{j} of $A^{T} A$ compute the smallest singular value $\sigma_{\downarrow}^{(\mathrm{rf-n})}$ and associated unit singular vectors of $\left(T_{m+1, m}-\mu_{j} I_{m+1, m}\right)$, i.e.,

$$
\begin{align*}
& \left(T_{m+1, m}-\mu_{j} I_{m+1, m}\right) v_{j}^{(\mathrm{rf}-\mathrm{n})}=\sigma_{\downarrow_{j}^{(\mathrm{rf}-\mathrm{n})} w_{j}} \tag{20}\\
& \left(T_{m+1, m}-\mu_{j} I_{m+1, m}\right)^{T} w_{j}=\sigma_{\downarrow}^{(\mathrm{rf}-\mathrm{n})} v_{j}^{(\mathrm{rf}-\mathrm{n})} \tag{21}
\end{align*}
$$

where $v_{j}^{(\mathrm{rf-n})} \in \mathbb{R}^{m}$ and $w_{j} \in \mathbb{R}^{m+1}$. Then from (5),(6), and (9) it follows that

$$
\begin{equation*}
\min _{\substack{z_{j} \in \mathbb{K}_{m}\left(A^{T} A, p_{1}\right) \\\left\|z_{j}\right\|=1}}\left\|A^{T} A z_{j}-\mu_{j} z_{j}\right\|=\left\|\left(T_{m+1, m}-\mu_{j} I_{m+1, m}\right) v_{j}^{(\mathrm{rf}-\mathrm{n})}\right\|=\sigma_{\downarrow}^{(\mathrm{rf}-\mathrm{n})} \tag{22}
\end{equation*}
$$

and the refined Ritz vector z_{j} for μ_{j} is defined as $z_{j}:=P_{m} v_{j}^{(\mathrm{rf-n})}$. The approximate eigenvalue of $A^{T} A$ associated with the refined Ritz vector z_{j} is selected as the Rayleigh quotient

$$
\begin{equation*}
\sigma_{j}^{(\mathrm{rf-n})^{2}}=z_{j}^{T} A^{T} A z_{j}=v_{j}^{(\mathrm{rf}-\mathrm{n})^{T}} B_{m}^{T} B_{m} v_{j}^{(\mathrm{rf}-\mathrm{n})}=\left\|B_{m} v_{j}^{(\mathrm{rf}-\mathrm{n})}\right\|^{2}, \tag{23}
\end{equation*}
$$

and the approximate refined singular triplet on the normal system for A is given by

$$
\begin{equation*}
\left\{\sigma_{j}^{(. .)}, Q_{m} u_{j}^{(. .)}, P_{m} v_{j}^{(. .)}\right\}=\left\{\sigma_{j}^{(\mathrm{rf-n})}, Q_{m} u_{j}^{(\mathrm{rf}-\mathrm{n})}, P_{m} v_{j}^{(\mathrm{rf-n)})}\right\}, \tag{24}
\end{equation*}
$$

where $u_{j}^{(\mathrm{rf-n})}=B_{m} v_{j}^{(\mathrm{rf-n})} / \sigma_{j}^{(\mathrm{rf-n})}$.
The initial approximate eigenvalue μ_{j} in equations (20)-(22) can be taken as the Ritz value $\sigma_{j}^{(\mathrm{rz})^{2}}$ (11). Then the iterative refined Ritz process iteratively refines the approximation, by taking the output approximation, $\sigma_{j}^{(r f-n)}$ (23), setting $\mu_{j}=\sigma_{j}^{(\mathrm{rf-n})^{2}}$, and re-computing refined vectors $v_{j}^{(\mathrm{rf-n})}$, via (20)(21) until convergence. This process produces a nonnegative, decreasing and hence convergent sequence $\sigma_{\downarrow}{ }^{(. .)}{ }^{(i)}$, see [2, Thm. 5.1]; Algorithm 1 outlines this process.

```
Algorithm 1 Iterative Refined
    Input: \(T_{m+1, m} \in \mathbb{R}^{(m+1) \times m}\) (19) or \(T_{2 m+1,2 m} \in \mathbb{R}^{(2 m+1) \times 2 m}\) (39) and \(\left\{\mu_{j}\right\}_{j=1}^{k}\).
    Output: \(\left\{\sigma_{j}^{(\mathrm{it-n)}}, u_{j}^{(\mathrm{it-n)}}, v_{j}^{(\mathrm{it-n)})}\right\}_{j=1}^{k}\) and \(\hat{\gamma}_{j}^{(\mathrm{it-n)})}\) or \(\left\{\sigma_{j}^{\text {(it-a) }}, u_{j}^{(\mathrm{it-a)})}, v_{j}^{(\mathrm{it-a)}}\right\}_{j=1}^{k}\) and \(\hat{\sigma}_{j}^{\text {(it-a) }}\).
    for \(j=1,2, \ldots, k\) do
        for \(i=1,2, \ldots\), maxitref do
            if normal system then
            Compute \(v_{j}^{(\mathrm{rf-n})}{ }^{(i)}, w_{j}^{(i)}\), and \(\sigma_{j}^{(\mathrm{rf-n})(i)}(20)\) and (21);
            \(\sigma_{j}^{(\mathrm{rf-n})(i)}:=\left\|B_{m} v_{j}^{(\mathrm{rf-n})(i)}\right\|\) (23);
            if converge then
                \(\sigma_{j}^{(\mathrm{it-n)}}:=\sigma_{j}^{(\mathrm{rf-n})\left({ }^{(i)}\right.}, v_{j}^{(\mathrm{it-n)}}:=v_{j}^{(\mathrm{rf-n})(i)}, u_{j}^{(\mathrm{it-n)})}:=B_{m} v_{j}^{(\mathrm{it-n)})} / \sigma_{j}^{(\mathrm{it-n)})}, \hat{\sigma}_{l}^{(\mathrm{it-n)})}:=\sigma_{\gamma_{j}^{(r-n)}(i)}^{(i)} ;\)
                    Break;
            end if
            \(\mu_{j}:=\left(\sigma_{j}^{(\mathrm{rr-n})}{ }^{(i)}\right)^{2} ;\)
            else
                Compute \(x_{j}^{(i)}, y_{j}^{(i)}, w_{x}{ }_{j}^{(i)}, w_{y_{j}}^{(i)}, w_{z_{j}}{ }^{(i)}\), and \(\sigma_{\downarrow_{j}^{(r f a) ~}{ }^{(i)}}^{(40)}\) and (41);
                \(\sigma_{j}^{(\mathrm{rf-a})(i)}:=2 x_{j}^{(i)^{T}} B_{m} y_{j}^{(i)}(43)\);
            if converge and \(\left|\left|\left|x_{j}^{(i)} \|-1 / \sqrt{2}\right| \leq \sqrt{\text { eps }}\right.\right.\) then
                \(\sigma_{j}^{(\mathrm{it-a)}}:=\sigma_{j}^{(\mathrm{rf-a})(i)}, v_{j}^{(\mathrm{it-a)})}:=y_{j}{ }^{(i)} /\left\|y_{j}{ }^{(i)}\right\|, u_{j}^{(\mathrm{it}-\mathrm{a})}:=x_{j}^{(i)} /\left\|x_{j}^{(i)}\right\|, \hat{\star}_{\downarrow}^{(\mathrm{it-a)}}:=\sigma_{\downarrow_{j}^{(\mathrm{fr}-\mathrm{a})}}{ }^{(i)} ;\)
                    Break;
            end if
            \(\mu_{j}:=\sigma_{j}^{(\mathrm{rf-a})}{ }^{(i)} ;\)
            end if
        end for
    end for
```

There are several options for the convergence check (steps 8 and 16) in Algorithm 1, e.g., $\left|\sigma_{j}^{(. .)}{ }^{(i)}-\sigma_{j}^{(. .)^{(i-1)}}\right| /\left|\sigma_{j}^{(. .)}{ }^{(i)}\right|<e p s$, where eps is machine epsilon; the additional requirement on $\left\|x_{j}^{(i)}\right\|$ in step 16 is discussed in Section 3.2. While using finite arithmetic, stagnation can occur and we propose including an additional check to exit when detected. We identify stagnation as failed convergence. The initial view of Algorithm 1 (for loop maxitref) may appear to be computationally expensive, however when the matrix B_{m} is kept very small, the cost is negligible in comparison to the cost of the matrix-vector products when the order of A is very large. We include computational times
for numerical examples in Section 5. When m is larger or as the overall scheme converges, we found that fewer iterations are needed and the iterative refined vectors did not differ much from the refined vectors. However, it should be noted again that the main focus of this paper is on using a very small subspaces, where differences are readily observed. Therefore, using Algorithm 1 with initial approximate eigenvalues $\mu_{j}=\sigma_{j}^{(\mathrm{rz})^{2}}$, we obtain the approximate iterative refined Ritz singular triplet on the normal system for A as

$$
\begin{equation*}
\left\{\sigma_{j}^{(. .)}, Q_{m} u_{j}^{(. .)}, P_{m} v_{j}^{(. .)}\right\}=\left\{\sigma_{j}^{(\mathrm{it}-\mathrm{n})}, Q_{m} u_{j}^{(\mathrm{it-n})}, P_{m} v_{j}^{(\mathrm{it}-\mathrm{n})}\right\} \tag{25}
\end{equation*}
$$

Using the m-GKL factorization and the refined Ritz singular approximation (24), together with equations (20)-(21), give us

$$
\begin{align*}
A P_{m} v_{j}^{(\mathrm{rf}-\mathrm{n})} & =Q_{m} B_{m} v_{j}^{(\mathrm{rf}-\mathrm{n})}=\sigma_{j}^{(\mathrm{rf}-\mathrm{n})} Q_{m} u_{j}^{(\mathrm{rf}-\mathrm{n})}, \tag{26}\\
A^{T} Q_{m} u_{j}^{(\mathrm{rf}-\mathrm{n})} & =P_{m} B_{m}^{T} u_{j}^{(\mathrm{rf}-\mathrm{n})}+f e_{m}^{T} u_{j}^{(\mathrm{rf}-\mathrm{n})}, \tag{27}\\
& =\sigma_{j}^{(\mathrm{rf}-\mathrm{n})} P_{m} v_{j}^{(\mathrm{rf}-\mathrm{n})}+\sigma_{j}^{(\mathrm{rf}-\mathrm{n})} / \sigma_{j}^{(\mathrm{rf}-\mathrm{n})}\left[P_{m} p_{m+1}\right] r_{j},
\end{align*}
$$

where $r_{j}=w_{j}-\left(\left[v_{j}^{(\mathrm{rf-n})} ; 0\right]^{T} w_{j}\right)\left[v_{j}^{(\mathrm{rf-n})} ; 0\right]$. Multiplying (26) by A^{T} on the left yields the following relation

$$
\begin{equation*}
A^{T} A P_{m} v_{j}^{(\mathrm{rf-n})}=\sigma_{j}^{(\mathrm{rf-n})^{2}} P_{m} v_{j}^{(\mathrm{rf-n})}+\sigma_{\downarrow}^{(\mathrm{rf-n})}\left[P_{m} p_{m+1}\right] r_{j} . \tag{28}
\end{equation*}
$$

If Algorithm 1 is used to compute the iterative refined Ritz value and vectors we have the output satisfying,

$$
\begin{align*}
& \left(T_{m+1, m}-\sigma_{j}^{(\mathrm{it-n})^{2}} I_{m+1, m}\right) v_{j}^{(\mathrm{it}-\mathrm{n})}=\hat{\sigma}_{\downarrow}^{(\mathrm{it}-\mathrm{n})} \hat{w}_{j} \tag{29}\\
& \left(T_{m+1, m}-\sigma_{j}^{(\mathrm{it-n})^{2}} I_{m+1, m}\right)^{T} \hat{w}_{j}=\hat{\sigma}_{\downarrow}^{(\mathrm{it}-\mathrm{n})} v_{j}^{(\mathrm{it}-\mathrm{n})} \tag{30}
\end{align*}
$$

and since $\sigma_{j}^{(\mathrm{it-n})^{2}}=v_{j}^{(\mathrm{it-n})^{T}} B_{m}^{T} B_{m} v_{j}^{(\mathrm{it-n})}$ we have from (29) $\left[v_{j}^{(\mathrm{it-n})} ; 0\right]^{T} \hat{w}_{j}=0$. Analogous to equations (26)-(27) with iterative refined Ritz singular approximation (25) we have,

$$
\begin{align*}
A P_{m} v_{j}^{(\mathrm{it}-\mathrm{n})} & =Q_{m} B_{m} v_{j}^{(\mathrm{it}-\mathrm{n})}=\sigma_{j}^{(\mathrm{it}-\mathrm{n})} Q_{m} u_{j}^{(\mathrm{it}-\mathrm{n})} \tag{31}\\
A^{T} Q_{m} u_{j}^{(\mathrm{it-n})} & =P_{m} B_{m}^{T} u_{j}^{(\mathrm{it-n})}+f e_{m}^{T} u_{j}^{(\mathrm{it-n})} \tag{32}\\
& =\sigma_{j}^{(\mathrm{it}-\mathrm{n})} P_{m} v_{j}^{(\mathrm{it-n})}+\hat{\sigma}_{\downarrow}^{(\mathrm{it-n})} / \sigma_{j}^{(\mathrm{it}-\mathrm{n})}\left[P_{m} p_{m+1}\right] \hat{w}_{j}
\end{align*}
$$

and after multipling (31) by A^{T}

$$
\begin{equation*}
A^{T} A P_{m} v_{j}^{(\mathrm{it}-\mathrm{n})}=\sigma_{j}^{(\mathrm{it-n})^{2}} P_{m} v_{j}^{(\mathrm{it}-\mathrm{n})}+\hat{\sigma}_{\downarrow}^{(\mathrm{it}-\mathrm{n})}\left[P_{m} p_{m+1}\right] \hat{w}_{j} . \tag{33}
\end{equation*}
$$

Applying [2, Eqns. (5.5) and (5.12)] to Lanczos relationships (28) and (33) shows that

$$
\begin{equation*}
\hat{\sigma}_{\downarrow}^{(\mathrm{it}-\mathrm{n})}=\operatorname{resNor}{ }_{j}^{(\mathrm{it}-\mathrm{n})} \leq \operatorname{resNor}{ }_{j}^{(\mathrm{rf-n})} \leq r e s N o r_{j}^{(\mathrm{rz})} \tag{34}
\end{equation*}
$$

Equation (34) shows that the iterative refined Ritz with respect to the normal residual on the same Krylov subspace $\mathbb{K}_{m}\left(A^{T} A, p_{1}\right)$ are better approximations, however an effective restart process that "improves" the next generated Krylov subspace is still needed. Equations (26)-(28) and (31)-(33) show that the refined Ritz and iterative refined Ritz vectors, respectively, are not all multiples of the same residual vector, see [2, Thm. 4.3] in context of Lanczos factorization and the symmetric eigenvalue problem. Therefore the thick-restarted scheme presented in Section 2 is not available. However, one can still explicitly restart the GKL algorithm with a linear combination. We first utilize that the approximations are taken from basis vectors and perform a single iteration of the GKL algorithm that avoids a matrix-vector product with A and A^{T} as follows.

1. Given $\bar{v}=\sum_{j=1}^{k} c_{j} v_{j}^{(. .)}$set $\beta_{0}=\|\bar{v}\|$ and $\bar{v}=\bar{v} / \beta_{0}$
2. Let $\bar{u}=B_{m} \bar{v}$ set $\alpha_{1}=\|\bar{u}\|$ and $\bar{u}=\bar{u} / \alpha_{1}$
3. Set $f=P_{m}\left(B_{m}^{T} \bar{u}-\alpha_{1} \bar{v}\right)+f e_{m}^{T} \bar{u}$ and $\beta_{1}=\|f\|$
4. Set $p_{1}=P_{m} \bar{v}, p_{2}=f / \beta_{1}, q_{1}=Q_{m} \bar{u}$

The steps in (35) yield the following 1-GKL factorization

$$
\begin{align*}
A p_{1} & =q_{1} \alpha_{1} \tag{36}\\
A^{T} q_{1} & =\left[p_{1}, p_{2}\right]\left[\begin{array}{l}
\alpha_{1} \\
\beta_{1}
\end{array}\right] \tag{37}
\end{align*}
$$

where GKL method can be restarted with p_{2}. It is worth noting for $k=1$ and $\bar{v}=v_{1}^{(\mathrm{rf}-\mathrm{n})}$ or $\bar{v}=v_{1}^{(\mathrm{it}-\mathrm{n})}$, equations (36)-(37) are the same as equations (26)-(27) or (31)-(32), respectively. For $k>1$ the coefficients c_{j} in (35) can be chosen several ways and greatly impact convergence. For example, for eigenvalue problems Saad [33] suggests using residual norms which was also used for the refined Ritz algorithm [15, Alg. 1]. In [2] an alternate approach for iterative refined vectors modeled after Morgan [29] was used to eliminate part of the residual vector as the next Krylov subspace is built. Morgan [29] showed that for Ritz vectors and carefully chosen constants c_{j} that parts of the residual vector is eliminated when multiplied by A in the next iteration to build out the Krylov subspace, which resulted in the same final subspace as when implementing Sorensen's implicitly restarted method [35]. Unfortunately, this equivalence is not present here, though not all is lost. It turns out that we can still eliminate part of the residual. This requires solving a small $(k-1) \times k$ homogeneous system of equations (38) for coefficients c_{j}

$$
\left[\begin{array}{rlr}
e_{m}^{T} v_{1}^{(\mathrm{it}-\mathrm{n})} & \ldots & \tag{38}\\
e_{m}^{T} v_{k}^{(\mathrm{it}-\mathrm{n})} \\
{\sigma_{1}^{(\mathrm{it}-\mathrm{n})^{2}}}^{(\mathrm{i}-2)} e_{m}^{T} B_{m}^{T} B_{m} v_{1}^{(\mathrm{it}-\mathrm{n})} & \ldots & \sigma_{k}^{(\mathrm{it-n})^{2(i-2)}} \\
e_{m}^{T} B_{m}^{T} B_{m} v_{k}^{(\mathrm{it-n})}
\end{array}\right] i>1,
$$

we refer the reader to $[2$, Sec. 6] for details.

3.2 Refined and Iterative Refined on augmented system

We now turn our attention to developing notions of refined and iterative refined Ritz values/vectors on the augmented system. We start by letting $M=C$ and $\mathcal{W}=\mathbb{K}_{2 m}\left(C,\left[0 ; p_{1}\right]\right)$ in equation (18) and define

$$
T_{2 m+1,2 m}:=\left[\begin{array}{cc}
0 & B_{m} \tag{39}\\
B_{m}^{T} & 0 \\
\beta_{m} e_{m}^{T} & 0
\end{array}\right] \in \mathbb{R}^{(2 m+1) \times 2 m} .
$$

For each initial eigenvalue approximation μ_{j} of C compute the smallest singular value $\sigma_{\downarrow}^{(r f-a)}$ and associated unit singular vectors of $\left(T_{2 m+1,2 m}-\mu_{j} I_{2 m+1,2 m}\right)$,

$$
\begin{align*}
\left(T_{2 m+1,2 m}-\mu_{j} I_{2 m+1,2 m}\right)\left[\begin{array}{c}
x_{j} \\
y_{j}
\end{array}\right] & =\sigma_{\downarrow}^{(\mathrm{rf-a})}\left[\begin{array}{l}
w_{x_{j}} \\
w_{y_{j}} \\
w_{z_{j}}
\end{array}\right], \tag{40}\\
\left(T_{2 m+1,2 m}-\mu_{j} I_{2 m+1,2 m}\right)^{T}\left[\begin{array}{l}
w_{x_{j}} \\
w_{y_{j}} \\
w_{z_{j}}
\end{array}\right] & =\sigma_{\downarrow}^{(\mathrm{rf-a})}\left[\begin{array}{c}
x_{j} \\
y_{j}
\end{array}\right], \tag{41}
\end{align*}
$$

where $x_{j}, y_{j}, w_{x_{j}}, w_{y_{j}} \in \mathbb{R}^{m}$ and $w_{z_{j}}$ is a scalar. Then it follows that
$\min _{\substack{z_{j} \in \mathbb{K}_{2}\left(C,\left[0 ; p_{1}\right]\right) \\\left\|z_{j}\right\|=1}}\left\|C z_{j}-\mu_{j} z_{j}\right\|=\left\|\left(T_{2 m+1,2 m}-\mu_{j} I_{2 m+1,2 m}\right)\left[\begin{array}{c}x_{j} \\ y_{j}\end{array}\right]\right\|=\sigma_{\downarrow}^{(\mathrm{rf-a)}}(42)$
and the refined Ritz vector z_{j} for μ_{j} is defined as $z_{j}:=\left[Q_{m} x_{j} ; P_{m} y_{j}\right]$. Analogous to the case of the normal system, the approximate eigenvalue of C associated with refined Ritz vector z_{j} is selected as the Rayleigh quotient

$$
\sigma_{j}^{(\mathrm{rf-a})}=z_{j}^{T} C z_{j}=\left[\begin{array}{c}
x_{j} \tag{43}\\
y_{j}
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & B_{m} \\
B_{m}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x_{j} \\
y_{j}
\end{array}\right]=2 x_{j}^{T} B_{m} y_{j}
$$

and the approximate refined singular triplet on the augmented system for A is given by

$$
\begin{equation*}
\left\{\sigma_{j}^{(.-)}, Q_{m} u_{j}^{(. .)}, P_{m} v_{j}^{(. .)}\right\}=\left\{\sigma_{j}^{(\mathrm{rf-a})}, Q_{m} u_{j}^{(\mathrm{rf-a)}}, P_{m} v_{j}^{(\mathrm{rf-a)})}\right\}, \tag{44}
\end{equation*}
$$

where $u_{j}^{(\mathrm{rf-a})}=x_{j} /\left\|x_{j}\right\|$ and $v_{j}^{(\mathrm{rf-a)}}=y_{j} /\left\|y_{j}\right\|$. Similar to (28) for the normal system, but this time applied to the Lanczos factorization (10) for the augmented system C, we have the following equality

$$
\left[\begin{array}{cc}
0 & A \tag{45}\\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
Q_{m} x_{j} \\
P_{m} y_{j}
\end{array}\right]=\sigma_{j}^{(\mathrm{rf-a})}\left[\begin{array}{c}
Q_{m} x_{j} \\
P_{m} y_{j}
\end{array}\right]+\sigma_{\downarrow}^{(\mathrm{rf-a})}\left[\begin{array}{ccc}
Q_{m} & 0 & 0 \\
0 & P_{m} & p_{m+1}
\end{array}\right]\left[\begin{array}{l}
r_{x_{j}} \\
r_{y_{j}} \\
r_{z j}
\end{array}\right],
$$

where $r_{z j}=w_{z_{j}}$ is a scalar, $r_{y_{j}}=w_{y_{j}}-\left[x_{j} ; y_{j}\right]^{T}\left[w_{x_{j}} ; w_{y_{j}}\right] y_{j} \in \mathbb{R}^{m}$, and $r_{x j}=w_{x j}-\left[x_{j} ; y_{j}\right]^{T}\left[w_{x j} ; w_{y_{j}}\right] x_{j} \in \mathbb{R}^{m}$. Given the relationship between the
eigenvalues of C and the singular values of A, we can start Algorithm 1 with the initial approximation μ_{j} in equations (40)-(42) as the Ritz value $\sigma_{j}^{(\mathrm{rzz})}$. This now gives us an approximate iterative refined Ritz singular triplet on the augmented system for A as

$$
\begin{equation*}
\left\{\sigma_{j}^{(. .)}, Q_{m} u_{j}^{(. .)}, P_{m} v_{j}^{(. .)}\right\}=\left\{\sigma_{j}^{(\mathrm{it}-\mathrm{a})}, Q_{m} u_{j}^{(\mathrm{it}-\mathrm{a})}, P_{m} v_{j}^{(\mathrm{it}-\mathrm{a})}\right\} . \tag{46}
\end{equation*}
$$

For convenience, consider the unscaled output vectors of $u_{j}^{(\mathrm{it-a)}}$ and $v_{j}^{(\mathrm{it-a)}}$ from Algorithm 1 as the last iteration vectors $\hat{x}_{j}:=x_{j}^{(i)}$ and $\hat{y}_{j}:=y_{j}^{(i)}$, respectively. Therefore, analogous to (29)-(30) and (33) we have the output from Algorithm 1 that satisfies

$$
\begin{align*}
&\left(T_{2 m+1,2 m}-\sigma_{j}^{(\mathrm{it-a)}} I_{2 m+1,2 m}\right)\left[\begin{array}{c}
\hat{x}_{j} \\
\hat{y}_{j}
\end{array}\right]=\hat{\sigma}_{\downarrow j}^{(\mathrm{it-a})}\left[\begin{array}{c}
\hat{w}_{x_{j}} \\
\hat{w}_{y_{j}} \\
\hat{w}_{z_{j}}
\end{array}\right] \tag{47}\\
&\left(T_{2 m+1,2 m}-\sigma_{j}^{(\mathrm{it-a})} I_{2 m+1,2 m}\right)^{T}\left[\begin{array}{c}
\hat{w}_{x_{j}} \\
\hat{w}_{y_{j}} \\
\hat{w}_{z_{j}}
\end{array}\right]=\hat{\sigma}_{\downarrow j}^{(\mathrm{it-a})}\left[\begin{array}{c}
\hat{x}_{j} \\
\hat{y}_{j}
\end{array}\right], \tag{48}
\end{align*}
$$

where $\left[\hat{x}_{j} ; \hat{y}_{j}\right]^{T}\left[\hat{w}_{x_{j}} ; \hat{w}_{y_{j}}\right]=0, \hat{x}_{j}, \hat{y}_{j}, \hat{w}_{x_{j}}, \hat{w}_{y_{j}} \in \mathbb{R}^{m}$, and $\hat{w}_{z_{j}}$ is a scalar and when applied to the Lanczos factorization (10) gives us the following

$$
\left[\begin{array}{cc}
0 & A \tag{49}\\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
Q_{m} \hat{x}_{j} \\
P_{m} \hat{y}_{j}
\end{array}\right]=\sigma_{j}^{(\mathrm{it-a})}\left[\begin{array}{l}
Q_{m} \hat{x}_{j} \\
P_{m} \hat{y}_{j}
\end{array}\right]+\hat{\sigma}_{\downarrow}^{(\mathrm{it-a})}\left[\begin{array}{ccc}
Q_{m} & 0 & 0 \\
0 & P_{m} & p_{m+1}
\end{array}\right]\left[\begin{array}{c}
\hat{w}_{x_{j}} \\
\hat{w}_{y_{j}} \\
\hat{w}_{z_{j}}
\end{array}\right]
$$

Similar to (34), the relationships (45) and (49) together with [2, Eqns. (5.5) and (5.12)] applied to symmetric matrix C imply that

$$
\begin{equation*}
\hat{\sigma}_{\downarrow}^{(\mathrm{it-a)}}=r e s A u g_{j}^{(\mathrm{it}-\mathrm{a})} \leq r e s A u g_{j}^{(\mathrm{rf}-\mathrm{a})} \leq r e s A u g_{j}^{(\mathrm{trz)}} \tag{50}
\end{equation*}
$$

Equation (50) shows that the iterative refined Ritz with respect to the augmented residual on the same Krylov subspace $\mathbb{K}_{2 m}\left(C,\left[0 ; p_{1}\right]\right)$ are better approximations. But relation (50) is derived with respect to the unscaled vectors $x_{j}, y_{j}, \hat{x}_{j}, \hat{y}_{j}$. Unlike the singular vectors computed from the eigenvectors of C, the norms $\left\|x_{j}\right\|,\left\|y_{j}\right\|\left\|\hat{x}_{j}\right\|$, and $\left\|\hat{y}_{j}\right\|$ are not necessarily equal to the common value $1 / \sqrt{2}$, especially during the onset of the overall routine. However, these norms do approach $1 / \sqrt{2}$ as approximations improve and we use it as a part of a convergence requirement in Algorithm 1. This requirement is reasonable by observing that from the iterative process of Algorithm 1 and equations (39), (40), and (43) it follows that

$$
\begin{equation*}
x_{j}^{(i)}=1 / \sigma_{j}^{(\mathrm{rf-a})^{(i-1)}}\left(B_{m} y_{j}^{(i)}-\sigma_{\downarrow_{j}^{(\mathrm{rf-a})}{ }^{(i)}}^{w_{x}}{ }_{j}^{(i)}\right) \tag{51}
\end{equation*}
$$

When the iterative refine process converges and $\hat{x}_{j}:=x_{j}^{(i)}$, then we have $\sigma_{j}^{(\mathrm{rf}-\mathrm{a})^{(i-1)}}=\sigma_{j}^{(\mathrm{rf}-\mathrm{a})^{(i)}}=\sigma_{j}^{(\mathrm{it}-\mathrm{a})}=2 \hat{x}_{j}^{T} B_{m} \hat{y}_{j} \quad$ and

$$
\begin{align*}
\hat{x}_{j} & =1 / \sigma_{j}^{(\mathrm{it}-\mathrm{a})}\left(B_{m} \hat{y}_{j}-\hat{\sigma}_{\downarrow}^{(\mathrm{it}-\mathrm{a})} \hat{w}_{x_{j}}\right), \tag{52}\\
\left\|\hat{x}_{j}\right\|^{2} & =1 / 2-\hat{\sigma}_{j}^{(\mathrm{it}-\mathrm{a})} / \sigma_{j}^{(\mathrm{it}-\mathrm{a})} \hat{x}_{j}^{T} \hat{w}_{x_{j}} . \tag{53}
\end{align*}
$$

If $\hat{\sigma}_{\downarrow}{ }^{(\mathrm{it}-\mathrm{a})}=0$, then we have the desired property and convergence (see (50)). If $\hat{\sigma}_{\nabla_{j}}^{(\mathrm{it-a)}} \neq 0$, then from (40) and (43) we have the relationship $\hat{x}_{j}^{T} \hat{w}_{x_{j}}=-\hat{y}_{j}^{T} \hat{w}_{y_{j}}$. After multiplying (47) by $\left[\hat{w}_{x_{j}} ; 0 ; 0\right]^{T}$ and using $B_{m} \hat{w}_{x_{j}}-\sigma_{j}^{(\mathrm{it-a)}} \hat{w}_{y_{j}}=\hat{\sigma}_{\downarrow_{j}}^{(\mathrm{it-a})} \hat{y}_{j}$ from (48), we obtain

$$
\begin{equation*}
\left|\left\|\hat{x}_{j}\right\|^{2}-1 / 2\right|=\left(\hat{\sigma}_{j}^{(\mathrm{it}-\mathrm{a})} / \sigma_{j}^{(\mathrm{it}-\mathrm{a})}\right)^{2}\left|\left\|\hat{w}_{x_{j}}\right\|^{2}-\left\|\hat{y}_{j}\right\|^{2}\right| / 2 \leq\left(\hat{\sigma}_{j}^{(\mathrm{it}-\mathrm{a})} / \sigma_{j}^{(\mathrm{it-a)})}\right)^{2} \tag{54}
\end{equation*}
$$

where the inequality is established using the triangle inequality and the fact that $\left\|\hat{w}_{x_{j}}\right\|<1$ and $\left\|\hat{y}_{j}\right\|<1$. Through numerical examples, we have found that including $\left|\left|\left|x_{j}^{(i)} \|-1 / \sqrt{2}\right| \leq \sqrt{e p s}\right.\right.$ with the convergence test in step 16 in Algorithm 1 resulted in a better performance in our hybrid algorithm for the augmented system.

Remark 2 We make the following observation from an asymptotic point of view of the iterative refined Ritz values/vectors on the augmented system. As the overall routine converges, it is expected for $\hat{\sigma}_{\downarrow}^{(\mathrm{it-a)}}$ in (49) to approach 0 . As $\hat{\sigma}_{j}^{(\mathrm{it-a})} \rightarrow 0$, from (52)-(54) we have that $\left\|\hat{x}_{j}\right\| \approx\left\|\hat{y}_{j}\right\| \approx 1 / \sqrt{2}, u_{j}^{(\mathrm{it-a})} \approx$ $1 / \sigma_{j}^{(\mathrm{it}-\mathrm{a})} B_{m} v_{j}^{(\mathrm{it}-\mathrm{a})}$, and $\sigma_{j}^{(\mathrm{it}-\mathrm{a})} \approx\left\|B_{m} v_{j}^{(\mathrm{it-a})}\right\|$. Moreover, we start to see the residual relation (50) holding on the normalized vectors and the alignment with the iterative refined Ritz values/vectors on the normal system. Therefore, we use formulas (35) with $v_{j}^{(. .)}:=v_{j}^{(\mathrm{it-a})}$ to obtain the 1-GKL factorization (36)-(37) where GKL method can be restarted with p_{2}. Likewise, when $k>1$, we can replace $v_{j}^{(. .)}:=v_{j}^{(\mathrm{it}-\mathrm{a})}$ and $\sigma_{j}^{(. .)}:=\sigma_{j}^{(\mathrm{it}-\mathrm{a})}$ and solve the homogeneous system (38) to restart with a linear combination of vectors. Although an alignment is eventually expected, there are convergence differences, see the numerical examples in Section 5.

We close this section with an example that illustrates that even though the refined and iterative refined values/vectors yield a "smaller" residual norm on the same Krylov subspace than Ritz values/vectors restarting with these "better" vectors in presence of small m value may not always yield a "better" Krylov subspace on the next iteration.

Example 1 For this and the subsequent example, we consider the diagonal ma$\operatorname{trix} A=\operatorname{diag}(1: 500)$ and the 262111×262111 matrix $A=$ amazon0302 from [7]. We let $k=1$ and $m=2$ and search for the largest singular triplet with tolerance 10^{-6} while using (17) as a stopping criteria. For both matrices, we started by computing 2 -GKL factorization with a random vector p_{1}, and then on the next restart p_{1} was computed to be Ritz vector $P_{m} v_{1}^{(\mathrm{rz})}$, refined Ritz on normal system $P_{m} v_{1}^{(r f-n)}$, iterative refined Ritz on normal system $P_{m} v_{1}^{(\mathrm{it}-\mathrm{n})}$,
refined Ritz on augmented system $P_{m} v_{1}^{(\mathrm{rf-a})}$, or iterative refined Ritz on augmented system $P_{m} v_{1}^{(\mathrm{it}-\mathrm{a})}$. For both matrices, we ran all five restart methods 10 times with a different random starting vector p_{1}. For each restart method, we chose to compute only the common Ritz norm, $\operatorname{res} A u g_{1}^{(\mathrm{rz})}$, as a way to make the comparison easier, but also because the focus here is on measuring the overall convergence, i.e., the quality of the Krylov subspaces.

The results are presented in Figures 1a-1b which display the number of matrix-vector products (mvp) with A and A^{T} against resAug ${ }_{1}^{(\mathrm{rzz})}$. From Figures $1 \mathrm{a}-1 \mathrm{~b}$ it is evident that there is a wide range of convergence while the iterative refined values/vectors which yield a "smaller" residual norm, (50), demonstrate poor convergence or stagnation. Moreover, both figures show that the all refined methods are struggling at the beginning, especially with the amazon0302 matrix (see Figure 1b). This suggest that on a small subspace the refined methods are having difficulty capturing the needed components of the desired singular vector for restarting. Section 4 shows how this can be overcome. Although not displayed, and as expected, when we increased the value of m the differences between routines became smaller with all routines converging, e.g., for the diagonal matrix, when $m=10$ all routines converged between about 300 and 380 matrix-vector products.

4 Hybrid Iterative Refined Algorithms

The poor convergence and stagnation reported for iterative refined Ritz vectors in Example 1 can be explained in part that the calculations of iterative refined Ritz vectors are more sensitive to converging to the next closest Ritz value during the iteration process. It is true that the refined Ritz also exhibit this behavior, but to a much lesser extent - causing slight jumps in residual curves at the beginning. This sensitivity of iterative refined Ritz vectors is the key for developing a hybrid method by signaling when the iterative refined vectors should not be used to restart the system.

This now brings us to our first hybrid method for computing largest singular triplets which uses thick-restarting with Ritz vectors and when certain criteria are met it switches to restarting with iterative refined Ritz vectors on the normal or the augmented system.

The parameters to switch between thick-restarting and restarting with iterative refined vectors were chosen based on numerous experiments across a variety of problems. A careful balance is needed, since on the one side the iterative refined Ritz vectors can give a better approximation but with possible stagnation, while on the other side thick-restarted is a more efficient restarting scheme, but with not as good of approximations. Therefore, we first check the angle via the inner product between the desired iterative refined vector and the Ritz vector to determine that the refined process did not cause the vectors to deviate too far from each other. If the angle is acceptable, we use iterative refined Ritz vector(s) to restart. Numerous experiments suggest using

$$
\begin{equation*}
\min _{1 \leq j \leq k}\left|v_{j}^{(\mathrm{rz})^{T}} v_{j}^{(. .)}\right|>0.9 \tag{55}
\end{equation*}
$$

Fig. 1 Examples 1-2: Each line represents a start with a random vector and then a restart using the stated vector in the legend.
where $v_{j}^{(. .)}:=v_{j}^{(\mathrm{it}-\mathrm{n})}$ for the normal system and $v_{j}^{(. .)}:=v_{j}^{(\mathrm{it}-\mathrm{a})}$ for the augmented system. Although we have not encountered the following situation in practice, it is worth noting that it is possible that a Ritz vector may not have any accuracy from the same subspace even though the refined vector is arbitrarily close to the desired eigenvector, see $[18,23]$. Since thick-restarted is the main routine with theoretical connection to implicitly restarted techniques and foundation for publicly available software, it is reasonable to assume that as the sequence of generated Krylov subspaces changes on each new iteration that the Ritz approximations will also change and improve.

Secondly, in order to ensure convergence and avoid missing singular triplets ($k>1$), we also require the input value μ_{j} into Algorithm 1 to be the best approximation for singular value of A over all computed $\sigma_{j}^{(\mathrm{rrz})}$ s values thus far and to reject using restarting with iterative refined Ritz vectors if the current computed iterative refined values, $\sigma_{j}^{(\mathrm{it-n)}}$ or $\sigma_{j}^{(\mathrm{it-a)}}$, are not "better" than the past iteration's best approximation. For example, during a current iteration
(iter) of Algorithm 2 we require in step 5 for the call to Algorithm 1 that

$$
\begin{equation*}
\mu_{j}=\max _{1 \leq \mathrm{i} \leq \mathrm{iter}}\left|\sigma_{j}^{(\mathrm{rz})}{ }^{(i)}\right| \quad \text { for } \quad 1 \leq j \leq k \tag{56}
\end{equation*}
$$

and for step 6

$$
\begin{equation*}
\left|\sigma_{j}^{(. .)}{ }^{(\mathrm{iter})}\right| \geq \max _{1 \leq \mathrm{i} \leq \mathrm{iter}-1}\left|\sigma_{j}^{(\mathrm{rz})}{ }^{(i)}\right| \quad \text { for } \quad 1 \leq j \leq k \tag{57}
\end{equation*}
$$

where $\sigma_{j}^{(. .)}:=\sigma_{j}^{(\mathrm{it-n)})}$ for the normal system and $\sigma_{j}^{(. .)}:=\sigma_{j}^{(\mathrm{it-a)})}$ for the augmented system. When $k=1$ we found that using (56) was a needed requirement for the best results, but encountered poor convergence results when enforcing (57) with $m=2$. Additionally, due to a negligible computational cost, various convergence checks are performed at different stages of Algorithm 2, e.g., see steps 4, 7, and 13 - this allows for Algorithm 2 to exit at the right time and to avoid performing unnecessary expensive computations.

We note to the reader that Algorithm 2 is a simplification of the actual computations performed. For instance, in the thick-restarted step 14 in Algorithm 2 we compute s-GKL factorization where $s \geq k$ before restarting. The technique of including additional vectors $(>k)$ is a very common strategy to accelerate the convergence in restarted methods. Similarly a gap strategy can also be used to accelerate the convergence by avoiding shifting too close to the desired spectrum. For example, in the implicitly shifted Lanczos bidiagonalization schemes, a relative gap strategy can be used to enhance convergence, see [$6,20,21,26]$ for details. Considering the connection between implicitly shifting with Ritz and thick-restarting, a simple gap strategy can also be used when deciding on adding additional vectors. We implemented the following straightforward and effective strategy for choosing $s \geq k$,

$$
\begin{align*}
& s=k+n_{c} \text {; } \\
& \text { if } \sigma_{s}-\sigma_{s+1}<\sigma_{s-1}-\sigma_{s}, s=s+1 \text {; end } \\
& s=\max \left(\text { floor }\left(\left(m+n_{c}\right) / 2\right), s\right) \tag{58}\\
& \text { if } s>=m, s=m-1 ; \text { end }
\end{align*}
$$

where n_{c} is the number of converged singular triplets, see [39] for details and comparison of techniques. The strategy in (58) works well in this context, particularly when difference between k and m is kept relatively small. When restarting with iterative refined Ritz vectors, relations (58) were too aggressive and rarely satisfied the requirements (55) and (57) for all $s>k$ and therefore we always use k iterative refined Ritz vectors for restarting. However, using k iterative refined Ritz vectors to restart can cause an unfortunate increase in the residual norms measured by Ritz values/vectors, particularly when $k>1$. This can be seen in part as negating the idea of the gap strategy mentioned above. Consequently, we do not restart consecutively with iterative refined Ritz vectors if the last restart with iterative refined Ritz vectors caused the residual norm of Ritz vectors/values to increase from the previous iteration.

```
Algorithm 2 Hybrid: Thick-Restarted - Restarted SVDS (trrsvds)
    Input: \(A \in \mathbb{R}^{\ell \times n}\) or functions for evaluating matrix-vector products with \(A\) or \(A^{T}\),
                \(m\) : maximum size of GKL factorization,
                \(k\) : number of desired singular triplets,
                \(p_{1}\) : unit vector,
                \(t o l:\) tolerance for accepting computed approximate singular triple, cf. (17).
    Output: \(k\) approximate singular triples \(\left\{\sigma_{j}, u_{j}, v_{j}\right\}_{j=1}^{k}\) of \(A\).
    Compute \(m\)-GKL factorization (5)-(6) with \(B_{m}\) as in (7) or (14);
    Compute the SVD of \(B_{m}\) (11) and check \(1 \leq j \leq k\) (17) with (15);
    Compute \(\left\{\sigma_{j}^{(. .)}, u_{j}^{(.)}, v_{j}^{(. .)}\right\}_{j=1}^{k}\) by Algorithm 1 with \(\mu_{j}\) (56) for either the augmented
    system or the normal system;
    if all \(\sigma_{j}^{(. .)}\)converged and satisfy (55) and (57) then
        Check \(1 \leq j \leq k\) (17) with (25) or (46);
        if \(k>1\) then
            Compute \(c_{j}\) from (38);
        end if
        Compute 1-GKL factorization (36)-(37);
    else
        Check \(1 \leq j \leq k\) (17) with (44) and \(\mu_{j}(56)\);
        Compute \(s\)-GKL factorization (12)-(13) where \(k \leq s<m\);
    end if
    Goto 3;
```

Example 2 This is a continuation of Example 1 and uses the same test matrices and parameters, except that now we use Algorithm 2 on two hybrid methods, restarting with $P_{m} v_{1}^{(\mathrm{rz})}$ and $P_{m} v_{1}^{(\mathrm{it-n})}$ (iterative refined Ritz on normal system) and $P_{m} v_{1}^{(\mathrm{rz)}}$ and $P_{m} v_{1}^{(\mathrm{it-a)})}$ (iterative refined Ritz on augmented system). Just as in Example 1 for both test matrices, we ran all hybrid methods 10 times with a different random starting vector p_{1}.

In Figures 1c-1d we collect the results, where the graphs display the number of matrix-vector products (mvp) with A and A^{T} against res $A u g_{1}^{(\mathrm{rz})}$ for all routines. More specifically, for $A=\operatorname{diag}(1: 500)$, Figure 1c shows that our hybrid method with iterative refined Ritz on normal system always converged between 210 and 315 matrix-vector products with respect to resAug ${ }_{1}^{(\mathrm{rz})}$, compared to Example 1 where the best result is 1100 matrix-vector products. Similarly, for $A=$ amazon0302, Figure 1d shows the hybrid method with iterative refined Ritz on normal system always converged between 125 and 205 matrix-vector products with respect to $\operatorname{resAug}{ }_{1}^{(\mathrm{rz})}$ while comparable computation in Example 1 required about 700 matrix-vector products. This clearly illustrates that Algorithm 2 restarting with $P_{m} v_{1}^{(\mathrm{rz})}$ and $P_{m} v_{1}^{(\mathrm{it-n)}}$ performed significantly better than all restarted methods in Example 1. Furthermore, we emphasize that in comparison to Example 1, Algorithm 2 avoided stagnation which was one of the motivating factors for its development.

Remark 3 We note that in the context of Example 2, if iterative refined Ritz vectors were replaced with refined Ritz vectors in Algorithm 2, then we saw almost no performance increases over the results in Example 1 for restarting with refined Ritz vectors. This is attributed in part to the angle criteria (55)
for switching being almost always satisfied, a similar observation was made in the context of eigenvalue computations in [2, Examples 5.3 and 6.2].

We conclude this section with a discussion of our second hybrid scheme, Algorithm 3, which can be viewed as a simple (≈ 100 lines of MATLAB code) yet powerful variant of Algorithm 2. Motivated by the performance of Algorithm 2 in Example 2, for Algorithm 3 we use the standard restarted process (no thick-restarted techniques) where we fix the basis size at $m=2$ and restart with either an iterative refined Ritz vector on the normal system, $P_{m} v_{1}^{(\mathrm{it}-\mathrm{n})}$, or a Ritz vector, $P_{m} v_{1}^{(\mathrm{rz})}$. This has the added advantage of reducing the overall complexity and computational cost beyond matrix-vector products, namely not needing to reorthogonalize the basis vectors, a gap strategy (58), or solving homogeneous system (38) when $k>1$, which potentially can become numerically ill-conditioned, see [2, Section 6]. Also, Algorithm 3 uses the "smallest" input matrix in the iterative scheme in Algorithm 1 further reducing the non-matrix-vector product computational cost.

Algorithm 3 requires a deflation strategy when computing $1<k<m$ singular triplets. For the deflation $(k>1)$, our technique is simple and heavily motivated by the discussion in [36] - when singular vectors have been determined to converge, they are locked and not modified again while at the same time all subsequent computed basis vectors are orthogonalized against them (see step 4 in Algorithm 3). In our implementation, if the k largest singular triplets are to be computed subject to the user-specified tolerance tol, then the first $k-1$ singular triplets are computed and deflated with the tolerance tol ${ }^{(d)}=10^{-1} \cdot$ tol. In comparison to the discussion in [36, Section 9] of the cascading approach, our choice of tol $^{(d)}$ is more restrictive when $k \leq 8$. Given that this paper primarily focuses on computing a small number of singular triplets, the choice of $t o l^{(d)}$ for deflating vectors is reasonable, simple to implement, yet highly effective as evidenced by all numerical results in Section 5. It is worth noting that a more involved deflation procedure might be needed when k is larger or deflation fails, e.g., singular triplets can not be computed within the user-specified tolerance. For an outline of some alternative approaches to deflation we refer the reader to [36], while a more comprehensive discussion of deflation can be found in $[34,37]$.

For the sake of completeness, we note that when deflation is performed in Algorithm 3 the computation of the residual in steps 7 and 13 is not straightforward and requires using the inner products from the Gram-Schmidt process between the converged singular vectors and the basis vectors in the GKL process. The monitoring of the inner products also permits an easy detection of a "locking problem" see [36, Lemma 1]. Therefore, in step 13 in Algorithm 3 we check that all residuals satisfy the user-specified tolerance tol. We note that in all numerical examples in Section 5, we used $t o l^{(d)}$ and did not encounter any "locking problems" for small values of k.

Remark 4 Algorithm 2 which requires $k<m$ does not require any deflation or locking procedure for the handling of $k>1$ singular triplets. That is, it
implements a "non-locking" method [36], where singular triplets are updated on every iteration. This is the same method used in [4] and for a small number of desired singular triplets with a "reasonable" convergence tolerance is a very effective method. Implementation of additional locking strategies for either Algorithm 2 or Algorithm 3 is outside of the scope of this paper. Note that no significant advantages are expected when only a small number of singular triplets is desired, see remarks in $[36,37]$.

```
Algorithm 3 Hybrid: Restarted Deflation \((2 \times 2)\) SVDS (rd2svds)
    Input: \(A \in \mathbb{R}^{\ell \times n}\) or functions for evaluating matrix-vector products with \(A\) or \(A^{T}\),
                \(k\) : number of desired singular triplets,
                \(p_{1}\) : unit vector,
                tol : tolerance for accepting computed approximate singular triples, cf. (17),
                \(t o l^{(d)}<t o l\) : tolerance for deflating \(<k\) singular triples, cf. (17).
    Output: \(k\) approximate singular triples \(\left\{\sigma_{j}, u_{j}, v_{j}\right\}_{j=1}^{k}\) of \(A\).
    \(j:=1\);
    Compute 2-GKL factorization where for \(i=1,2, \ldots,(j-1)\)
    \(P_{2}^{T} v_{i}=0, f^{T} v_{i}=0\), and \(Q_{2}^{T} u_{i}=0 ;\)
    Compute the largest singular triplet \(\left\{\sigma_{1}^{(\mathrm{rz})}, u_{1}^{(\mathrm{rz})}, v_{1}^{(\mathrm{rz})}\right\}\) of \(B_{2}\) (11);
    Compute \(\left\{\sigma_{1}^{(\mathrm{it-n})}, u_{1}^{(\mathrm{it-n})}, v_{1}^{(\mathrm{it-n})}\right\}\) by Algorithm 1 with \(\mu_{1}\) (56);
    if \(j<k\) and (17) is satisfied with tol \({ }^{(d)}\) using either (25) or (44) with \(\mu_{1}\) (56); then
        \(\left\{\sigma_{j}, u_{j}, v_{j}\right\}:=\left\{\sigma_{1}^{(\mathrm{it-n)}}, Q_{2} u_{1}^{(\mathrm{it}-\mathrm{n})}, P_{2} v_{1}^{(\mathrm{itt-n})}\right\}\) or \(\left\{\sigma_{j}, u_{j}, v_{j}\right\}:=\left\{\sigma_{1}^{(\mathrm{rf-a)}}, Q_{2} u_{1}^{(\mathrm{rf-a)}}, P_{2} v_{1}^{(\mathrm{rf-a)}}\right\} ;\)
        Compute \(f=f-\left(v_{j}^{T} f\right) v_{j}\);
        \(p_{1}:=f /\|f\|, j:=j+1\);
        Goto 4;
    else
        Check (17) with tol using either (25) or (44) and \(\mu_{1}\) (56);
    end if
    if \(\sigma_{1}^{(\mathrm{it-n})}\) converged and satisfies (55) then
        Compute 1-GKL factorization (36)-(37);
    else
        Compute 1-GKL factorization (12)-(13);
    end if
    Goto 4;
```


5 Numerical Examples

In this section, we present MATLAB codes trrsvds ${ }^{2}$ and rd2svds ${ }^{2}$ which implement Algorithm 2 and Algorithm 3, respectively, along with several numerical examples that illustrate their performance. To that end, we compare our methods to six other routines: three publicly available MATLAB codes irlba $[4]^{2,3}$, svdifp $[28]^{4}$, and GKD $[9]^{5}$, a publicly available MATLAB interfaced code primme_svds[41] ${ }^{6}$, and MATLAB's built-in functions svds and eigs, where
${ }^{2}$ Code available at: http://www.math.uri.edu/~jbaglama, retrieved on 4/10/22
${ }^{3}$ Code available at: http://www.netlib.org/numeralgo/na26.tgz, retrieved on 4/10/22
${ }^{4}$ Code available at: https://github.com/wildstone/SVDIFP, retrieved on 4/10/22
${ }^{5}$ Code available at: https://github.com/sgoldenCS/GKD, retrieved on 4/10/22
${ }^{6}$ Code available at: https://github.com/primme/primme, retrieved on 4/10/22
eigs is applied to the symmetric matrices $A^{T} A$ and $C=\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]$ and the equivalent eigenvalue problems. Note that here we do not necessarily advocate using eigs on $A^{T} A$ as a general purpose method nor do we choose comparison examples where it is known to perform poorly. We refer the reader to [37, Section 3.2] for a through investigation of using $A^{T} A$ to compute singular triplets.

The MATLAB interfaced code primme_svds is part of a massive high performance C99 library PRIMME for computing eigenpairs and singular triplets and consists of numerous routines/techniques each with a different set of parameters. It is not possible for us to compare against all these options and thus we only provide a small sample of them while using default values for most of the parameters and only set the ones needed for fair comparison. More specifically, in all examples parameters are set to indicate that the problems are real and to use double precision. Also, the value primme.method is set to be the default_min_matvecs, since this is the measure we are comparing, and finally, the method is set to be primme_svds_hybrid. Likewise, the MATLAB GKD code also has many options and we continued to use the default parameter values except for minRestart. The default choice for minRestart caused the basis size to increase since minRestart must be less than than maxBasis. Because of such small basis sizes used in our examples we set minRestart to be equal to k and this provided very strong results for GKD as can be seen in Tables 3-5.

Routines GKD, svdifp, and primme_svds allow application of a preconditioner and can perform better when one is applied [9,28,41]. But the use of a preconditioner significantly increases the overall storage requirements, counter to this paper's primary goal of using as little storage as possible, and hence we do not apply a preconditioner. To quote the authors of [28], "svdifp without preconditioning is simply the restarted Lanczos method with the LOBPCGtype subspace enhancement."

The MATLAB code irlba implements a technique to include additional vectors for thick-restarted as a way of improving convergence, similar to our dynamic scheme (58). However, irlba instead utilizes a parameter adjust which is by default set at three and allows the parameter to internally increase by the number of converged singular triplets. If initially adjust and k exceed the size of basis, the basis size is increased. Because of this rigidity of parameter adjust at the start and the fact that in all of our examples the Lanczos basis is restricted to be as small as possible, we set adjust to zero instead of its default value three.

Now we turn our attention to trrsvds whose description of parameters and their default values are given in Table 1. To illustrate the different methods available for trrsvds via the parameter choices we use the notation trrsvds([nor, aug]). The first entry is either nor for the normal equations in the hybrid method to compute the iterative refined Ritz pairs (25) or aug for the augmented equations in the hybrid method to compute the iterative refined Ritz pairs (46).

With respect to reorthogonalization, trrsvds implements either one-sided full reorthogonalization or two-sided full reorthogonalization. If A is deter-

Table 1 The user specific parameters for trrsvds.

k	Number of desired singular values. Default: $k=1$.
m	Number of Lanczos vectors. Default: $m=2$ or $m=15$ if sigma $=$ 'SS'
ma	Maximum number of restarts. Default: maxit $=2000$
maxitre	Maximum number of iterations to find iterative refined Ritz singular values, see Algorithm 1. Default: maxitref $=100$.
method	'nor', 'aug') which method to use. Defau
re	('one' or 'two') sided full reorthogonalization. Defa
sigma	('LS' or 'SS') location of singular values. Default: sigma = 'LS'
tol	Tolerance for convergence, (17). Default: $t o l=\sqrt{e p s}$.
p_{1}	Starting vector. If $\ell>n$ and sigma $=$ 'SS' then $p_{1} \in \mathbb{R}^{\ell}$ else $p_{1} \in \mathbb{R}^{n}$. Default: $p_{1}=\operatorname{randn}(n, 1)$.

mined to be ill-conditioned, by monitoring the minimum and maximum singular values of B_{m}, then two-sided full reorthogonalization is used. Examples presented in this section with trrsvds, one-sided and two-sided full reorthogonalization yield about the same accuracy, and so we do not report both. It should be noted that the full reorthogonalization strategy increases the overall computational times when Lanczos basis is increased. Unlike trrsvds, reorthogonalization is not used in rd2svds since only one-step of the GKL process is used to build 2-GKL factorization. The routines rd2svds and trrsvds with basis size of only two vectors ($m=2$) using hybrid method with normal equations and searching only for the largest singular triplets are mathematically equivalent, but they are slightly numerically different (see the results as reported in Examples 3-4 when $k=1$ and $m=2$).

For the purpose of comparing codes, we limit our analysis to either using the default values for the parameters or set the parameters so that they the provide fairest comparison with respect to our proposed methods. For all codes, we set the following common parameters: number of desired singular triplets k, a common random starting vector $p_{1} \in \mathbb{R}^{n}$ or $\left[0 ; p_{1}\right] \in \mathbb{R}^{n+\ell}$ for the augmented system $C=\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]$, tolerance tol $=10^{-6}$, and Lanczos basis maximum size m. Instead of a starting vector, routines GKD, svdifp, and primme_svds use an input matrix, and thus, for those routines we set the first column to be the common starting vector p_{1} and the rest of the columns are set to be common among those three routines.

In regards to the other parameters, we set the tolerance for svdifp to be tol $\cdot\|A\|_{2}$. This parameter choice provided the same order of magnitude of the residuals computed by svdifp as well as the other routines in Examples 3-4. With respect to a common basis size similar to m in trrsvds, we identify the parameter in the other methods that represent the "storage" or basis size. Depending on a routine and a coding style, this parameter may be restricted (e.g., eigs(C) and svds require $m \geq k+2$) or additional storage may be included for calculations. We assume that for all methods the parameter that represents "storage" is comparable to the basis size m in ttrsvds and is therefore represented by m in and Tables $3-5$. However, given the complexities and propriety of some of the codes this may not always be the case.

Remark 5 Let $k>1$ be an arbitrary but fixed number of desired singular triplets. Recall that ttrsvds computes those k triplets with respect to the basis parameter $m \geq k$ and requires storage of $2 m+1$ vectors. On the other hand, executing steps 4-19 in Algorithm 3 requires storage of 5 vectors, namely $p_{1}, p_{2}, q_{1}, q_{2}$, and f, that get constantly overwritten. rd2svds also requires an additional storage for $2(k-1)$ converged left and right singular vectors. In case when $m=k+1$ in ttrsvds, then ttrsvds and rd2svds have the same storage requirements, making them the most suitable for a direct comparison. Thus, we report results for rd2svds in Tables 4-5 under the size $m=k+1$.

In all examples and for all codes except svdifp, matrices A and A^{T} are only accessed by calling a function whose inputs are x and a parameter designating which matrix-vector product, $A x$ or $A^{T} x$, is to be the output. svdifp requires user to input the matrix A. The recorded value mvp in the examples is the total number of times $A x$ and $A^{T} x$ are computed. When the augmented system C (8) is used, to save memory space, it is never explicitly formed; the input vector is split and the calculation is only performed on $A x$ and $A^{T} x$. All numerical examples were carried out using MATLAB version R2021a on a MacBook Pro 2.6 GHz 6 -Core Intel Core i7 processor and $16 \mathrm{~GB}(2667 \mathrm{MHz})$ of memory using operating system macOS Big Sur. Machine epsilon is $\epsilon=2.2 \cdot 10^{-16}$. In Tables $3-5$, "N/A" is used to denote that the method is not available for the specified choice of parameters, "N/R" stands for not recorded and is used when a method alters parameters making it unfair for comparison, and finally "N/C" denotes the routine did not converge in the allotted (default) number of iterations - note that we did not modify the parameters to get the routine to work (e.g., increase the default setting for maximum number of iterations). The recorded cpu times displayed in Tables 3-5 are in seconds and recorded using MATLAB's tic-toc command. Here we note that since primme_svds is a MATLAB interfaced code, the recorded times are expected to be less than the all MATLAB syntax codes. Finally, it is worth highlighting that the performance of the methods in our comparisons also depends on the machine architecture, the author's coding style, the design/purpose of the routines, and numerical implementation. Our MATLAB codes included here are only an illustration of the presented methods and the comparison is only meant to show the methods in this paper are competitive to other existing routines.

Example 3 In this example we investigate the performance of routines ttrsvds and rd2svds when computing k largest singular triplets of six different matrices, where $k=1,2,3,4$ and m is varied from $(k+1)$ to $(k+3)$. More specifically, we compare performance of rd2svds, trrsvds (nor), and trrsvds (aug), with the methods eigs(C), eigs ($A^{T} A$), irlba, svdifp, svds, primme_svds, and GKD. The test matrices we used for the comparison are $A=\operatorname{diag}(1: 500)$ and the five matrices listed in Table 2 from the SuiteSparse Matrix Collection [7].

The mvp and cpu times are displayed in Tables 4-5 for different combinations of k and m. It is easy to see from the Tables $4-5$ that our proposed routines are competitive. Moreover, Tables 4-5 also demonstrate that all of our three methods have converged for all m and k values - particularly of note is
the case when $m=k+1$ in which case rd2svds performs excellently, while that was not even an option for majority of the other routines.

In summary, given a wide range in sizes of the test matrices, together with the varied proximity among the largest singular values (see Table 2), Example 3 shows that the methods developed in this paper are particularly competitive when using small m relative to the number of desired singular triplets k.

Table 2 Test matrices used for the examples from the SuiteSparse Matrix Collection [7]

Matrix	illc1033	JP	amazon0302	Rucci1	relat9
\# Rows	1033	87616	262111	1977885	12360060
\# Cols	320	67320	262111	109900	549336
Non-zeros	4719	13734559	1234877	7791168	38955420
Kind	Least Squares	Tomography	Directed Graph	Least Squares	Combinatorial
σ_{1}	2.1444	4223.1	21.218	7.0687	21.626
σ_{2}	2.1042	4019.3	21.136	6.9853	20.417
σ_{3}	2.0855	3872.8	20.027	6.9625	18.666
σ_{4}	2.0574	3819.2	19.277	6.8895	18.61

Example 4 For our final example, we compute the largest singular triplet for the matrix kmerV1r, currently the second largest in order in the SuiteSparse Matrix Collection [7] (kmerV1r is a square matrix with 214005017 rows and 465410904 nonzero entries). This is also one of the largest matrices that was able to be loaded into MATLAB allowing all of the routines to successfully compute the largest singular triplet and has pushed the bounds of the machine architecture used. Table 3 displays the results for computing the largest singular triplet of kmerV1r with $m=2,3$. The largest singular value was computed by all routines as $\sigma_{1}=6.5035$ within the desired tolerance. As seen in Table 3, for $m=2$ our MATLAB codes ttrsvds and rd2svds all converged within 45 minutes, the fastest, rd2svds, converging in about 31 minutes making it highly competitive with the other routines.

6 Conclusions

This paper extends the hybrid concept in [2] recently applied to the symmetric eigenvalue problem to the GKL process. The new restarted hybrid GKL methods combine thick-restarting with Ritz vectors or with a judiciously chosen linear combination of iterative refined Ritz vectors. Numerical examples show our methods to be competitive with other publicly available codes, particularly when there are limited memory requirements.

Acknowledgements The authors are thankful to the anonymous referee whose suggestions helped improve the paper. The work of Vasilije Perović was partially supported by the Faculty Career Enhancement Grant 2020-2021 through the University of Rhode Island.

Table 3 Example 4: mvp counts and total cpu times for computing the largest singular triplet for the matrix kmerV1r with $m=2,3$. For $m=2$ the method GKD increased m to $m=3$ and hence is not reported N/R.

Method	m	mvp	cpu
rd2svds	2	72	1867 s
	-	-	-
trrsvds (nor)	2	66	2032
	3	82	2939 s
trrsvds (aug)	2	80	2698 s
	3	66	2287 s
eigs (C)	N / A	-	-
	3	274	22686 s
eigs $\left(A^{T} A\right)$	N / A	-	-
	3	91	1868 s

Method	m	mvp	cpu
irlba	2	138	4554 s
	3	90	3122 s
svdifp	2	115	9276 s
	3	81	7669
svds	N / A	-	-
	3	206	15091 s
primme_svds	N / A	-	-
	3	64	1975 s
GKD	N / R	-	-
	3	58	5282 s

Declarations

The authors declare that they have no conflict of interest. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

1. Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences 97(18), 10101-10106 (2000)
2. Baglama, J., Bella, T., Picucci, J.: Hybrid iterative refined method for computing a few extreme eigenpairs of a symmetric matrix. SIAM Journal on Scientific Computing 43(5), S200-S224 (2021).
3. Baglama, J., Kane, M., Lewis, B., Poliakov, A.: Efficient thresholded correlation using truncated singular value decomposition. arXiv preprint arXiv:1512.07246 (2015)
4. Baglama, J., Reichel, L.: Augmented implicitly restarted Lanczos bidiagonalization methods. SIAM Journal on Scientific Computing 27(1), 19-42 (2005)
5. Baglama, J., Reichel, L.: An implicitly restarted block Lanczos bidiagonalization method using Leja shifts. BIT Numerical Mathematics 53(2), 285-310 (2013)
6. Baglama, J., Richmond, D.J.: Implicitly restarting the LSQR algorithm. Electronic Transactions on Numerical Analysis 42, 85-105 (2014)
7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Transactions on Mathematical Software 38(1), 1-25 (2011)
8. Eldén, L.: Matrix methods in data mining and pattern recognition. SIAM (2007)
9. Goldenberg, S., Stathopoulos, A., Romero, E.: A Golub-Kahan Davidson method for accurately computing a few singular triplets of large sparse matrices. SIAM Journal on Scientific Computing 41(4), A2172-A2192 (2019)
10. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society for Industrial \& Applied Mathematics, Series B: Numerical Analysis 2(2), 205-224 (1965)
11. Golub, G.H., Van Loan, C.F.: Matrix Computations, fourth edn. The Johns Hopkins University Press (2013)
12. Hochstenbach, M.E.: Harmonic and refined extraction methods for the singular value problem, with applications in least squares problems. BIT Numerical Mathematics 44(4), 721-754 (2004)
13. Hochstenbach, M.E.: Generalizations of harmonic and refined Rayleigh-Ritz. Electronic Transactions on Numerical Analysis 20, 235-252 (2005)
14. Hochstenbach, M.E., Sleijpen, G.L.: Harmonic and refined Rayleigh-Ritz for the polynomial eigenvalue problem. Numerical Linear Algebra with Applications 15(1), 35-54 (2008)
15. Jia, Z.: Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems. Linear Algebra and its Applications 259, 1-23 (1997)
16. Jia, Z.: Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm. Linear Algebra and its Applications 287(1-3), 191-214 (1999)
17. Jia, Z.: The refined harmonic Arnoldi method and an implicitly restarted refined algorithm for computing interior eigenpairs of large matrices. Applied Numerical Mathematics 42(4), 489-512 (2002)
18. Jia, Z.: Some theoretical comparisons of refined Ritz vectors and Ritz vectors. Science in China Series A: Mathematics 47(1), 222-233 (2004)
19. Jia, Z.: The convergence of harmonic Ritz values, harmonic Ritz vectors and refined harmonic Ritz vectors. Mathematics of Computation 74(251), 1441-1456 (2005)
20. Jia, Z., Niu, D.: An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition. SIAM Journal on Matrix Analysis and Applications 25(1), 246-265 (2003)
21. Jia, Z., Niu, D.: A refined harmonic Lanczos bidiagonalization method and an implicitly restarted algorithm for computing the smallest singular triplets of large matrices. SIAM Journal on Scientific Computing 32(2), 714-744 (2010)
22. Jia, Z., Stewart, G.W.: An analysis of the Rayleigh-Ritz method for approximating eigenspaces. Mathematics of Computation 70(234), 637-647 (2001)
23. Jiang, W., Wu, G.: A thick-restarted block Arnoldi algorithm with modified Ritz vectors for large eigenproblems. Computers \& Mathematics with Applications 60(3), 873-889 (2010)
24. Jolliffe, I.: Principal component analysis. Wiley Online Library (2005)
25. Kokiopoulou, E., Bekas, C., Gallopoulos, E.: Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization. Applied Numerical Mathematics 49, 39-61 (2004). DOI 10.1016/j.apnum.2003.11.011
26. Larsen, R.: Combining implicit restart and partial reorthogonalization in Lanczos bidiagnalization, 2001
27. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users' guide: Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM (1998)
28. Liang, Q., Ye, Q.: Computing singular values of large matrices with an inverse-free preconditioned Krylov subspace method. Electronic Transactions on Numerical Analysis 42, 197 (2014)
29. Morgan, R.B.: On restarting the Arnoldi method for large nonsymmetric eigenvalue problems. Mathematics of Computation 65(215), 1213-1230 (1996)
30. Niu, D., Yuan, X.: An implicitly restarted lanczos bidiagonalization method with refined harmonic shifts for computing smallest singular triplets. Journal of Computational and Applied Mathematics 260, 208-217 (2014)
31. Olney, A.M.: Large-scale latent semantic analysis. Behavior research methods $\mathbf{4 3}(2)$, 414-423 (2011)
32. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software (TOMS) 8(1), 43-71 (1982)
33. Saad, Y.: Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices. Linear Algebra and its Applications 34, 269-295 (1980)
34. Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Revised Edition. Society for Industrial and Applied Mathematics (2011)
35. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix Analysis and Applications 13(1), 357-385 (1992)
36. Stathopoulos, A.: Locking issues for finding a large number of eigenvectors of hermitian matrices. Tech. rep., Citeseer (2005)
37. Stewart, G.W.: Matrix Algorithms: Volume II: Eigensystems. Society for Industrial and Applied Mathematics (2001). DOI 10.1137/1.9780898718058
38. Stoll, M.: A Krylov-Schur approach to the truncated SVD. Linear Algebra and its Applications 436(8), 2795-2806 (2012)
39. Wu, K., Simon, H.: Dynamic restarting schemes for eigenvalue problems. Tech. rep., Lawrence Berkeley National Lab., CA (US) (1999)
40. Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM Journal on Matrix Analysis and Applications 22(2), 602-616 (2000)
41. Wu, L., Romero, E., Stathopoulos, A.: Primme_svds: A high-performance preconditioned svd solver for accurate large-scale computations. SIAM Journal on Scientific Computing 39(5), S248-S271 (2017)

Table 4 Example 3: mvp counts and total cpu times for matrices diag(1:500), illc1033, and JP. For $m=k+1$ the methods eigs (C), eigs $\left(A^{T} A\right)$, and svds were N/A and the method GKD was N / R since it increased m to $m=k+2$, therefore those methods are omitted in the table when $m=k+1$. rd2svds is only reported for $m=k+1$.

	diag(1:500)				illc1033				JP			
	$\mathrm{m}=\mathrm{k}+1$											
Method	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	k=1	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	k=1	$\mathrm{k}=2$	k=3	$\mathrm{k}=4$
rd2svds	276	412	686	796	120	192	298	416	54	144	212	278
	0.07s	0.04s	0.06s	0.06s	0.03s	0.03 s	0.03s	0.03s	0.80s	2.20 s	3.30s	4.30s
trrsvds(nor)	286	2172	1006	1086	114	436	304	208	58	136	292	214
	0.15 s	0.39s	0.23 s	0.32s	0.10s	0.13s	0.09s	0.05s	1.03 s	2.33s	5.08 s	3.80s
trrsvds(aug)	1390	964	946	1192	126	282	252	570	70	94	264	202
	0.17s	0.25 s	0.35s	0.55s	0.03s	0.06s	0.08s	0.19s	1.14s	1.55 s	4.58 s	3.57s
irlba	N/C	N/C	N/C		364	708	424	728	122	148	436	210
	N/C	N/C	N/C		0.04s	0.05s	0.03s	0.05s	1.97 s	2.37s	7.32 s	3.54s
svdifp	423	546	801	1042	223	306	353	422	83	132	209	282
	0.05s	0.03 s	0.02s	0.02s	0.03s	0.02s	0.01s	0.01s	1.42 s	2.22 s	3.52 s	4.78s
primme_svds		N		458	N	N	N/A	188	N/A	N/A		130
		N		0.02s			N/A	0.01s	N/A	N/A		2.11
	diag(1:500)				illc1033				JP			
	$\mathrm{m}=\mathrm{k}+2$											
Meth	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$
trrsvds(nor)	310	1102	442	612	106	228	168	164	66	94	130	94
	0.05s	0.13s	0.07s	0.13s	0.03s	0.04s	0.03s	0.04s	1.06s	1.60s	2.24 s	1.57 s
trrsvds(aug)	310	622	422	504	106	154	154	124	54	82	164	86
	0.03s	0.10s	0.11s	0.16s	0.02s	0.03s	0.04s	0.04s	0.88s	1.33 s	2.90s	1.49 s
eigs(C)	N/C	N/C	N/C	N/C	690	528	584	406	242	292	558	300
					0.07s	0.03s	0.05s	0.02s	4.08s	4.98s	10.1s	9.67s
eigs ($A^{T} A$)	1147	706	693	N/C	199	168	185	120	79	94	149	98
	0.03 s	0.02s	0.02s		0.01s	0.01s	0.01s	0.004s	1.26 s	1.48 s	2.39 s	1.55 s
irlba	1146	960	674	1132	198	206	162	142	78	78	118	80
	0.07s	0.06s	0.04s	0.07s	0.02s	0.02s	0.01s	0.01s	1.22 s	1.26 s	1.94 s	1.32 s
svdifp	291	478	719	960	147	262	309	408	69	126	209	252
	0.01 s	0.02s	0.01s	0.02s	0.01s	0.02s	0.01s	0.01s	1.16 s	2.12s	3.53 s	4.46 s
svds	N/C	N	N/C	N/C	N/C	N/C	N/C	212	206	208	210	202
primme_svds								0.02	3.36s	3.42 s	3.57 s	
	218	N/A	404	454			148	176		N/A	106	118
	0.02s		0.02s	0.02s	0.01s		0.01s	0.01s	0.80s	N/A	1.74 s	1.88 s
GKD	212	321	368	435	112	113	130	153	42	69	94	107
	0.04 s	0.06s	0.05s	0.07s	0.03s	0.03 s	0.03 s	0.03s	0.73s	1.16 s	1.68 s	2.02s
	diag(1:500)				illc1033				JP			
	$\mathrm{m}=\mathrm{k}+3$											
Method	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$
trrsvds(nor)	386	772	402	392	112	116	148	128	58	84	102	80
	0.05s	0.08s	0.05s	0.06s	0.02s	0.02s	0.02s	0.02s	0.96s	1.35 s	1.72 s	1.34 s
trrsvds(aug)	406	412	354	386	102	154	166	158	54	78	78	82
	0.06s	0.05s	0.07s	0.10s	0.01s	0.02s	0.03s	0.04s	0.87s	1.25 s	1.32 s	1.39s
eigs(C)	N/C	1732	1270	N/C	504	402	384	286	140	188	278	166
		0.06s	0.04s		0.03s	0.02s	0.02s	0.01s	2.35 s	3.19s	5.59 s	2.82 s
eigs ($A^{T} A$)	681	506	417	654	149	134	131	112	49	72	97	80
	0.02s	0.01s	0.01s	0.02s	0.01s	0.004 s	0.004s	0.003s	0.78s	1.13 s	1.55 s	1.25 s
irlba	800	680	486	426	146	158	136	130	62	70	84	70
	0.04 s	0.03s	0.02s	0.02s	0.01s	0.01 s	0.01s	0.01s	0.97s	1.11s	1.38 s	1.17s
svdifp	251	446	681	908	123	216	297	390	59	126	189	278
	0.01s	0.01s	0.03s	0.02s	0.003s	0.01s	0.03s	0.01s	0.99s	2.12s	3.36 s	5.02s
svds	N/C	N/C	N/C	N/C	210	208	214	236	164	212	176	136
					0.02s	0.02s	0.02s	0.02s	2.72s	3.63s	3.01s	2.29s
primme_svds	178	242	386	366	64	104	144	156	46	64	102	110
	0.01s	0.02s	0.02s	0.02s	0.01s	0.01s	0.01s	0.01s	0.77s	1.04s	1.64 s	1.75 s
GKD	208	325	352	421	92	113	130	161	38	69	102	101
	0.03 s	0.05s	0.05s	0.05s	0.02s	0.02s	0.03s	0.03 s	0.68s	1.20 s	1.90 s	1.80 s

Table 5 Example 3: mvp counts and total cpu times for matrices amazon0302, Rucci1, and relat9. For $m=k+1$ the methods eigs(C), eigs ($A^{T} A$), and svds were N/A and the method GKD was N / R since it increased m to $m=k+2$, therefore those methods are omitted in the table when $m=k+1$. rd2svds is only reported for $m=k+1$.

	amazon0302				Rucci1				relat9			
	$\mathrm{m}=\mathrm{k}+1$											
Method	k=1	$\mathrm{k}=2$	$\mathrm{k}=3$	k=4	k=1	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=1$	k=2	$\mathrm{k}=3$	$\mathrm{k}=4$
rd2svds	148	220	290	318	126	194	290	438	66	114	242	386
	0.64s	0.97s	1.40 s	1.90s	3.40 s	5.70 s	9.50 s	17.0s	20.3 s	42.0s	96.0s	170s
trrsvds(nor)	158	136	232	114	132	978	234	916	60	104	1216	1088
	0.75 s	0.83s	1.96s	1.11s	4.64s	41.6s	11.0s	64.0s	21.4 s	38.0s	677s	729s
trrsvds (aug)	888	104	168	136	166	846	346	1000	76	90	1036	1460
	4.16 s	0.70s	1.46 s	1.48 s	5.78 s	37.7s	20.1 s	72s	27.5s	38.5 s	592s	981s
irlba	1236	150	186	160	456	1280	636	1330	102	102	1442	N/C
	6.27 s	1.15 s	1.57s	1.92s	14.1s	56.8 s	34.2 s	81.0s	35.8 s	46.6s	803s	N/C
svdifp	179	168	233	342	183	414	489	592	79	138	441	542
	1.37 s	1.36 s	2.10s	3.40 s	9.20 s	20.5 s	25.2 s	31.8 s	40.2s	71.1s	245 s	314s
primme_svds	N/A	N/A	N/A	$\begin{array}{c\|} \hline 148 \\ 1.06 \mathrm{~s} \end{array}$	N/A	N/A	N/A	$\begin{array}{c\|} \hline 288 \\ 5.44 \mathrm{~s} \end{array}$	N/A	N/A	N/A	$\begin{gathered} 224 \\ 58.8 \mathrm{~s} \end{gathered}$
	amazon0302				Rucci1				relat9			
	$\mathrm{m}=\mathrm{k}+2$											
Method	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$
trrsvds (nor)	138	86	144	92	122	306	230	540	62	74	640	490
	0.64s	0.49s	1.01s	0.81s	3.56s	10.1s	9.31 s	40.5s	19.9s	27.0s	413s	354s
trrsvds (aug)	142	78	142	86	114	210	222	482	58	64	764	402
	0.65 s	0.48s	1.00 s	0.86s	3.39s	9.91s	9.24 s	34.9 s	19.0s	27.1s	512s	297s
eigs(C)	N/C	$\begin{array}{c\|} \hline 290 \\ 2.18 \mathrm{~s} \end{array}$	$\begin{array}{\|c} \hline 218 \\ 1.88 \mathrm{~s} \end{array}$	$\begin{gathered} \hline 342 \\ 4.04 \mathrm{~s} \end{gathered}$	$\begin{gathered} \hline 886 \\ 31.2 \mathrm{~s} \end{gathered}$	N/C	N/C	N/C	$\begin{gathered} 202 \\ 82.3 \mathrm{~s} \end{gathered}$	$\begin{gathered} 208 \\ 100 \mathrm{~s} \end{gathered}$	N/C	N/C
eigs ($A^{T} A$)	651	94	85	104	255	212	365	612	71	68		464
	2.46s	0.43 s	0.43 s	0.63 s	3.26 s	2.76 s	5.23 s	8.90s	16.5 s	15.8 s	N/C	109s
irlba	650	92	94	92	254	264	320	596	70	66	926	464
	3.18s	0.61s	0.77s	0.93s	6.92s	9.08s	15.1 s	38.0 s	22.5 s	25.7s	564s	314s
svdifp	105	158	259	312	141	334	439	552	69	134	389	492
	0.85s	1.41 s	2.53 s	4.68 s	6.99 s	17.3 s	23.7 s	44.9s	35.6s	72.0s	225s	418 s
svds	$\begin{array}{\|c\|} \hline 206 \\ 1.32 \mathrm{~s} \end{array}$	208	$\begin{array}{\|c\|} \hline 210 \\ 1.98 \mathrm{~s} \end{array}$	$\begin{array}{\|c} \hline 212 \\ 2.28 \mathrm{~s} \end{array}$	N/C	N/C	N/C	N/C	150	$\begin{gathered} \hline 208 \\ 104 \mathrm{~s} \end{gathered}$	N/C	N/C
	96	N/A	110	146	98		202	292	46		180	226
primme_svds	0.46 s		0.80s	0.98s	1.74 s	N/A	3.84 s	5.20 s	11.8 s	N/A	47.3 s	56.6s
GKD	90	73	98	105	92	171	194	307	40	63	326	221
	0.74s	0.89s	1.44 s	1.77 s	4.94s	11.9 s	15.3 s	29.8 s	24.0 s	43.6 s	260s	200s
	amazon0302				Rucci1				relat9			
	$\mathrm{m}=\mathrm{k}+3$											
Method	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$
trrsvds(nor)	110	74	96	76	118	232	262	348	52	62	348	328
	0.62 s	0.42s	0.65s	0.77s	3.52s	8.35 s	9.30s	20.7s	16.7 s	21.9s	233s	251s
trrsvds (aug)	84	72	76	88	126	202	158	350	58	60	338	320
	0.47s	0.44s	0.56s	0.73 s	3.85s	6.85s	5.83 s	23.5 s	20.0s	21.7s	238 s	251s
eigs(C)	284	222	182	218	572	624	724	1160	128	150	N/C	988
	2.14 s	1.59 s	1.49 s	2.04 s	22.8s	24.6 s	31.9 s	58.6s	55.9s	65.2 s	N/C	539s
$\operatorname{eigs}\left(A^{T} A\right)$	89	76	79	84	177	188	209	356	49	60	513	268
	0.41s	0.33 s	0.38s	0.44s	2.29 s	2.59 s	2.95 s	5.02s	11.4 s	14.1 s	119s	62.7 s
irlba	446	76	80	76	188	210	210	206	56	60	322	332
	2.22 s	0.48 s	0.60s	0.69s	4.94s	6.48s	7.53 s	8.94s	17.4 s	21.5 s	206s	237s
svdifp	99	186	237	306	123	296	405	530	67	126	345	502
	0.89s	1.84 s	3.55s	5.08s	6.26 s	16.0s	32.8 s	46.0s	35.8 s	70.5s	292s	455s
svds	188	166	192	412				410	126	212		412
	1.50 s	1.54 s	2.13s	3.44 s	N/C	N/C	N/C	18.3 s	61.7s	115s	N/C	199s
primme_svds	64	76	112	122	100	148	202	230	46	66	164	182
	0.35 s	0.48 s	0.75 s	0.85s	1.80 s	2.75 s	3.80s	4.33 s	12.0s	17.7s	42.9s	47.7s
GKD	80	73	96	105	92	171	190	283	40	63	258	231
	0.67s	0.76s	1.50 s	1.52 s	4.93 s	11.4 s	14.7 s	24.2 s	23.4 s	41.6s	189s	207s

[^0]: Submitted to the editors xxxxxx.
 J. Baglama • V. Perović • J. Picucci

 Department of Mathematics and Applied Mathematical Sciences, University of Rhode Island, Kingston, RI 02881
 E-mail: jbaglama@uri.edu, perovic@uri.edu, jenniferpicucci@uri.edu
 J. Picucci
 U.S. Army Engineer Research and Development Center, Vicksburg, MS

 E-mail: Jennifer.r.picucci@usace.army.mil
 ${ }^{1}$ Otherwise replace A with A^{T}.

