Quiz IV

Name:

Show all your work.!
(1) Compute the determinant by cofactor expansions. At each step choose the row or column that involves the least amount of computation.
$\left|\begin{array}{cccc}3 & 5 & -8 & 4 \\ 0 & -2 & 3 & -7 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 2\end{array}\right|$
(2) Let $\mathbf{u}=\binom{3}{-2}$ and $\mathbf{v}=\binom{8}{4}$. Compute the area of the parallelogram determined by $\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$ and $\mathbf{0}$.
(3) Find the determinants, where

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=7
$$

(a) $\left|\begin{array}{ccc}a & b & c \\ 3 d & 3 e & 3 f \\ g & h & i\end{array}\right|$
(b) $\left|\begin{array}{lll}g & h & i \\ a & b & c \\ d & e & f\end{array}\right|$
(c) $\left|\begin{array}{ccc}a+d & b+e & c+f \\ d & e & f \\ g & h & i\end{array}\right|$
(4) Use determinants to decide if the set of vectors is linearly independent

$$
\left(\begin{array}{c}
3 \\
5 \\
-6 \\
4
\end{array}\right), \quad\left(\begin{array}{c}
2 \\
-6 \\
0 \\
7
\end{array}\right), \quad\left(\begin{array}{c}
-2 \\
-1 \\
3 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
0 \\
-3
\end{array}\right)
$$

(5) Let H be the set of points inside and on the unit circle in the $x y$-plane. That is

$$
H=\left\{\binom{x}{y}: x^{2}+y^{2} \leq 1\right\} .
$$

Show that H is not a subspace of \mathbb{R}^{2}.
What are the properties that a subset H of a vector space V should satisfy to be a subspace?
(6) Find a basis for $\operatorname{Nul}(A)$ and $\operatorname{Col}(A)$ by listing vectors that span the null space of A and the column space of A respectively. where

$$
A=\left(\begin{array}{ccccc}
1 & 5 & -4 & -3 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Find
(a) s such that $\operatorname{Nul}(\mathrm{A})$ is a subspace of \mathbb{R}^{s}
(b) t such that $\operatorname{Col}(\mathrm{A})$ is a subspace of \mathbb{R}^{t}

