Maple Project I

Polar Plots

To plot in maple the parametric equations

$$
x=f(t), \quad y=g(t), \quad \text { with } \quad t \in[a, b]
$$

We type the command:

$$
\operatorname{plot}([\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t}), \mathrm{t}=\mathrm{a} . . \mathrm{b}]) ;
$$

For example, to plot a circle of radius 3 centered at the origin, we type
$>\operatorname{plot}([3 * \cos (\mathrm{t}), 3 * \sin (\mathrm{t}), \mathrm{t}=0 . .2 * \mathrm{Pi}]$, scaling=constrained);

To plot the polar equation

$$
r=r(t), \quad t \in[\alpha, \beta]
$$

where α and β are certain angles, we need to convert the given equation from polar coordinates to rectangular coordinates using the equations:

$$
x=r \cos (t), \quad y=r \sin (t)
$$

Example: Plot the polar equation

$$
r=\cos (3 t), \quad \text { with } \quad t \in[0,2 \pi]
$$

In maple format:

```
> r:=cos(3*t): plot([r*\operatorname{cos}(t),r*sin(t), t=0..2*Pi], scaling=constrained);
```


Homework:

1. Using constrained scaling, plot the ellipse $x=3 \cos (t)$ and $y=\sin (t)$
2. Graph each of the following equations. If the graph is a conic section (ellipse, hyperbola, or parabola), then give the location of the foci or focus.
(a) $r=\sin (2 t)$
(b) $r=2 \cos (t)+1$
(c) $r^{2}=\cos (2 t)$
3. Find graphically the intersection points of the parabolas

$$
r=\frac{1}{1-\cos (t)} \quad \text { and } \quad r=\frac{3}{1+\cos (t)}
$$

Hint: To get a better display of the graphs restrict your plot to the window $[-5,5] \times[-5,5]$

