Maple Project I

Polar Plots

To plot in maple the **parametric equations**

 $x=f(t), \qquad y=g(t), \qquad \text{with} \qquad t\in [a,b]$

We type the command:

plot([f(t), g(t), t=a..b]);

For example, to plot a circle of radius 3 centered at the origin, we type $% \left({{{\mathbf{F}}_{\mathbf{r}}}^{2}} \right)$

> plot([3*cos(t), 3*sin(t), t=0..2*Pi], scaling=constrained);

To plot the polar equation

$$r = r(t), \qquad t \in [\alpha, \beta]$$

where α and β are certain angles, we need to convert the given equation from **polar coordinates** to **rectangular coordinates** using the equations:

 $x = r\cos(t), \qquad y = r\sin(t)$

Example: Plot the polar equation

$$r = \cos(3t),$$
 with $t \in [0, 2\pi]$

In maple format:

> r:=cos(3*t): plot([r*cos(t), r*sin(t), t=0..2*Pi], scaling=constrained);

Homework:

- 1. Using constrained scaling, plot the ellipse $x = 3\cos(t)$ and $y = \sin(t)$
- 2. Graph each of the following equations. If the graph is a conic section (ellipse, hyperbola, or parabola), then give the location of the foci or focus.
 - (a) $r = \sin(2t)$
 - (b) $r = 2\cos(t) + 1$
 - (c) $r^2 = \cos(2t)$
- 3. Find graphically the intersection points of the parabolas

$$r = \frac{1}{1 - \cos(t)}$$
 and $r = \frac{3}{1 + \cos(t)}$

Hint: To get a better display of the graphs restrict your plot to the window $[-5,5] \times [-5,5]$