MTH 215

EXAM II

November 12, 2004
DUE NOVEMBER 15, 2004 at 3:00 PM

Name:

Show all your work

(1) Find the standard matrix representation A for the reflection of the plane in the line $5 x-2 y=0$.
(2) (a) Let R be the parallelogram determined by the vectors $\vec{b}_{1}=\binom{-2}{3}$ and $\vec{b}_{2}=\binom{-2}{5}$, and let $A=\left(\begin{array}{cc}6 & -2 \\ -3 & 2\end{array}\right)$. Compute the area of the image of R under the mapping $\vec{x} \mapsto A \vec{x}$. (In other words compute the area of the parallelogram $A(R)$).
(b) Find the volume of the parallelepiped (box) with one vertex at the origin and adjacent vertices at $(1,0,-2),(1,2,4),(7,1,0)$.
(3) (a) Compute $\operatorname{det} B^{5}$, where $B=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right)$
(b) Suppose A is a square matrix such that $\operatorname{det} A^{4}=0$. Explain why A can not be invertible.
(c) Compute the determinant of the following matrix. Make sure that you do it in as FEW steps as possible!

$$
\left(\begin{array}{cccc}
1 & -3 & 1 & -2 \\
2 & -5 & -1 & -2 \\
0 & -4 & 5 & 1 \\
-3 & 10 & -6 & 8
\end{array}\right)
$$

(4) Find the adjoint of matrix A and use it to find A^{-1}.

$$
A=\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & -1 & 1 \\
1 & 4 & -2
\end{array}\right)
$$

(5) Given the matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & 3 \\
-1 & 1 & -3 \\
2 & 4 & 9
\end{array}\right)
$$

(a) Find the characteristic polynomial of A.
(b) Find all the eigenvalues of A.
(c) Find a basis for the eigenspace corresponding to each eigenvalue in (b).
(6) Use Cramer's rule to compute the solution of the system

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =4 \\
-x_{1}+2 x_{3} & =2 \\
3 x_{1}+x_{2}+3 x_{3} & =-2
\end{aligned}
$$

(7) Assume that T is a linear transformation.
(a) Find the standard matrix representation of T when $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a "horizontal shear " transformation that maps $\hat{e_{2}}$ into $\hat{e_{2}}-3 \hat{e_{1}}$ but leaves the vector $\hat{e_{1}}$ unchanged.
(b) Find the standard matrix representation of T when $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points clockwise about the origin through an angle of $\frac{3}{4} \pi$ radians.
(8) (a) Find the values of λ for which the given matrix is singular

$$
\left(\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 1-\lambda & 4 \\
0 & 1 & 1-\lambda
\end{array}\right)
$$

(b) Let

$$
A=\left(\begin{array}{ccc}
3 & 6 & -8 \\
0 & 0 & 6 \\
0 & 0 & 2
\end{array}\right)
$$

Find the all eigenvalues of A. One of the eigenvalues of A is zero. Based on this fact, what can you conclude about A. Justify your answer.

