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ATTRACTORS

ARACELI M. BONIFANT AND JOHN ERIK FORNÆSS

Abstract. In this paper we investigate attractors that are extended in space,

but where the internal dynamics is ignored.

This paper is dedicated to Professor Hans Grauert

1. Introduction

Attractors play an important role in dynamics. The most basic ones are attract-
ing fixed points (or periodic points). There has also been a lot of investigation about
attractors that are extended in space. In that case, the focus has been on the in-
vestigation of detailed dynamical properties inside the attractor. See Lorenz ([L]),
Tucker ([T]), Hénon ([H]), Bendedicks-Carleson ([BC]), Fornæss-Gavosto ([FG]),
Fornæss-Weickert ([FW]), Jonsson-Weickert ([JW]) and Fornæss-Sibony ([FS2]).
In this paper we investigate attractors that are extended in space, but where the
internal dynamics is ignored.

Let M be a topological space and f : M → M a continuous map. Let ρ be
a continuous pseudometric on M and let µ be a probability measure on M. An
attractor, in this paper, is a distinguished point p in M which is said to absorb all
points q ∈ M whose orbit get closer than a given number, called radius, εp > 0,
i.e., ρ(fn(p), fn(q)) ≤ εp for some integer n ≥ 0. The basin of attraction, B(p),
of an attractor p consists of those q which gets absorbed by p. We will say that
such q collide with p. We can also call such an attractor a collision-attractor, a
sticky attractor or a planetary attractor. One might suggestively think of asteroids
colliding with planets. Gravitational attraction makes the asteroid stick to the
planet. More generally, structures grow by adding ingredients.

In Section 2 we consider the case of an invariant mixing ergodic measure and
prove that all attractors absorb mass at the same rate. In Section 3, we show for
hyperbolic maps with product structure that a dense set of points avoid any given
attractor. In Section 4 we extend the result of Section 3 to arbitrary holomorphic
maps of Pk. We would like to thank the referee for many helpful comments.

2. Endomorphisms

Let (M,σ) be a compact metric space M , with metric σ and f : M → M a
continuous map. Let ρ be a continuous pseudometric on M. We assume that M
carries an invariant, mixing Borel probability measure µ. So µ(E) = µ(f−1(E))
and
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cn(E,F ) := µ(f−n(E) ∩ F )→n→∞ µ(E)µ(F )

for all measurable sets E,F. For x ∈M, ε > 0, n ≥ 0 let

Cρ(x, ε, n) := {y ∈M ; ρ(fn(x), fn(y)) ≤ ε}

Cρ(x, ε, n) := ∪k≤nCρ(x, ε, k)

Cρ(x, ε) := ∪nCρ(x, ε, n)

Cρ(x) := ∩ε>0Cρ(x, ε).

So Cρ(x, ε) is the basin B(x) of x with the given radius, εx = ε.

PROPOSITION 2.1. Let 0 < ζ < 1. There exists an integer N = N(ε, ζ) so that
if x ∈ Sµ, the support of µ, i.e., the smallest compact set K for which µ(Kc) = 0,
then µ(Cρ(x, ε,N)) ≥ ζ.

Proof: It suffices to prove the Proposition in the case when the pseudometric
ρ is the given metric σ of M since those basins are smaller after changing ε. We
cover Sµ by finitely many open balls Vi = B(xi, ε/2) each of which intersects Sµ.
Set η = mini µ(Vi) > 0. For j ≥ 0, let Pj denote the following statement:

Pj: There exist an integer nj ≥ 1, finitely many open sets {U
j
` }` and compact sets

{F j` }` in M such that

(i) Sµ ⊂ ∪`U
j
`

(ii) µ(F j` ) ≥ 1−
(

1− η
2

)j

(iii) If x ∈ U j` then Cρ(x, ε, nj) ⊃ F j` .

The statement P0 is trivially satisfied with U
0
1 =M, F 01 = ∅ and n0 = 1.

Suppose that we have proved Pj , j ≥ 0. We prove Pj+1. For each i, ` we have
from the mixing property of µ that

µ(f−n(Vi) ∩ (M \ F j` )) →n→∞ µ(Vi)µ(M \ F j` )

= µ(Vi)(1− µ(F
j
` )).

Hence we can find nj+1 > nj so that for all i, `

µ(f−nj+1(Vi) ∩ (M \ F j` )) ≥ η(1− µ(F j` ))− δ

where δ > 0 will be fixed later. (See formula (*) below.)

Next let Kj
i,` ⊂M \ F j` be a compact subset of f

−nj+1(Vi) ∩ (M \ F j` ) so that

µ(Kj
i,`) ≥ η(1− µ(F j` ))− 2δ.

Define next F j+1i,` = F j` ∪ K
j
i,`. Also define U

j+1
i,` = f−nj+1(Vi) ∩ U

j
` . We show

that {U j+1i,` , F j+1i,` }i,` satisfy (i), (ii), (iii) except for reordering.
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(i) If x ∈ Sµ, then by Pj , x ∈ U
j
` for some `. Also f

nj+1(x) ∈ Sµ ⊂ ∪Vi. Hence

fnj+1(x) ∈ Vi for some i. Therefore, x ∈ U
j+1
i,` . So Sµ ⊂ ∪U

j+1
i,` .

(iii) If x ∈ U j+1i,` , then x ∈ U j` so Cρ(x, ε, nj+1) ⊃ Cρ(x, ε, nj) ⊃ F j` . Also

x ∈ U j+1i,` ⇒ fnj+1(x) ∈ Vi. If y ∈ Kj
i,`, then y ∈ f−nj+1(Vi) so f

nj+1(y) ∈ Vi
also. Hence ρ(fnj+1(x), fnj+1(y)) < ε which implies that y ∈ Cρ(x, ε, nj+1). Hence

Cρ(x, ε, nj+1) ⊃ F j` ∪K
j
i,` = F j+1i,` .

(ii) Since Kj
i,` ⊂M \ F j` , we have

µ(F j+1i,` ) = µ(F j` ∪K
j
i,`)

= µ(F j` ) + µ(Kj
i,`)

≥ µ(F j` ) + η(1− µ(F j` ))− 2δ

= (η − 2δ) + µ(F j` )(1− η)

≥ η − 2δ + (1− (1−
η

2
)j)(1− η/2− η/2)

= 1− (1−
η

2
)j+1 +

η

2
(1−

η

2
)j − 2δ

So we just have to choose

(∗) δ =
η

4
(1−

η

2
)j .

This proves the inductive hypothesis Pj+1.

To complete the proof of the proposition, choose j ≥ 0 such that
(1− η

2 )
j ≤ 1− ζ and put N = nj . Then, if x ∈ Sµ, by Pj(i), x ∈ U

j
` for some j, `.

Hence by Pj(iii), µ(Cρ(x, ε, nj)) ≥ µ(F j` ) and by Pj(ii), µ(F
j
` ) ≥ 1− (1−η/2)

j ≥ ζ.
Therefore µ(Cρ(x, ε,N)) = µ(Cρ(x, ε, nj)) ≥ ζ as desired.

COROLLARY 2.2. For every x ∈ Sµ, µ(Cρ(x)) = 1.

Proof: For every ε > 0, Cρ(x, ε) ⊃ Cρ(x, ε,N(ε, ζ)) for all 0 < ζ < 1. Hence
µ(Cρ(x, ε)) = 1. If ε1 < ε2, then Cρ(x, ε1) ⊂ Cρ(x, ε2) and hence
Cρ(x) = ∩

∞
n=1Cρ(x, 1/n) so µ(Cρ(x)) = 1.

Let µ2 denote the product measure µ× µ on M ×M.

COROLLARY 2.3. Let ε > 0. Under the conditions of Proposition 2.1, the set
of (p, q) ∈ M ×M which collide, i.e., ρ(fn(p), fn(q)) ≤ ε for some n, has full µ2

measure.

Proof: For any p ∈ Sµ, µ(Cρ(p, ε)) = 1. All points q ∈ Cρ(p, ε) collide with p.
Integrating over p, the result follows.
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We finish this section by giving a few examples.

In the first two examples the map is ergodic but not mixing. The last three
examples are all mixing, and attractors differ in whether their basins cover all of
Sµ.

The irrational rotation of the unit circle, f : T → T , f(z) = zeiψ for a eiψ not a
root of unity, is ergodic for the arc-length measure µ = dθ

2π .

Example 2.4. We choose first the pseudometric ρ1(z, w) = |<(z − w)|. For any
attractor p ∈ T and any ε > 0, B(p) = T. Physically one can think of the time-1
map of a harmonic oscillator where <(z) represents position and =(z) represents
momentum. Any q ∈ T eventually collides with p, i.e., gets closer than ρ1 = ε, so
the basin of p is the whole circle.

Example 2.5. However, for the metric ρ2(z, w) = |z − w|, the basin is never the
whole circle if ε is small. Physically this represents time-1 maps of particles in
circular motion.

Example 2.6. If we use the pseudometric ρ1 above for the mixing map f = z2 on
the circle, we also get that for small ε > 0, the basin of q will not contain all points.

Example 2.7. Let N ≥ 1, X = {x = (xn)
∞
n=0, xn ∈ {0, 1},

∏N
k=0 xn+k = 0 ∀n}.

We define a metric on X, σ(x, y) =
∑∞
n=0

|xn−yn|
2n . The shift map f : X →

X, f(x0, x1, . . . ) = (x1, x2, . . . ) is continuous and surjective. We choose a pseudo-
metric ρ(x, y) = |x0−y0|. Then we have that for any 0 < ε < 1, Cρ((0, 0 . . . ), ε,N +
1) = X.

Example 2.8. We can construct a compact set K in the plane and a continuous
self-map f with an ergodic mixing probability measure µ with support K. Moreover,
each point is an attractor which absorbs all points.
We proceed inductively. Suppose that Kn is a finite set {pj}

N
j=1 and Fn is a per-

mutation. Let Cj , j = 1, . . . , N be small circles centered at pj . The radii will shrink

very rapidly with n. Fix a number Ñ > N which is relatively prime with N and let
M >> Ñ × N. We put M equidistributed points {pj,k}

M
k=1 around each pj except

around p1 where we use {p1,k}
M+Ñ
k=1 . Next we define the compact set Kn+1 := {pj,k}

and define Fn+1 by letting

Fn+1(pj,k) = pj+1,k, j = 1, . . . , N − 1, k = 1, . . . ,M

Fn+1(pN,k) = p1,k+1, k = 1, . . . ,M

Fn+1(p1,k) = p1,k+1, k =M + 1, . . . ,M + Ñ − 1

Fn+1(p1,M+Ñ ) = p1,1

Any given two points on the limiting compact set have orbits that come arbitrarily
close to each other.

In Figure 1 we give pictures of an attractor after 2 and 10 iterations.
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Figure 1. Attractor for f(z) = exp(iψz). The picture (left) shows
the basin of 1 in white after 2 iterates. The picture (right) shows
the attractor after 10 iterates. In both cases ψ = .7 and ε = 0.5.
The pseudometric is |<z−<w|. The rectangles are [-8, 4]x [-14, -2]

3. Hyperbolic Diffeomorphisms

Suppose that M is a smooth manifold with Riemannian metric ρ = ds. Let
f :M →M be a smooth C∞ diffeomorphism. Assume that K is a compact totally
invariant perfect set. Suppose that f is hyperbolic on K with continuously varying
stable subbundle Es and unstable bundle Eu. We assume that dimEs,dimEu > 0
and that K has local product structure.

PROPOSITION 3.1. If p ∈ K, then K \ Cρ(p) is dense in K.

Proof: Suppose p ∈ K. Pick q ∈ K \ {p}. We want to show that there are
points in K arbitrarily close to q which doesn’t belong to Cρ(p). Let 0 < τ << 1
be arbitrary and let W u

τ (q) denote the local unstable manifold of q with radius τ.
It suffices to find an integer n so that W u

τ (q) \ Cρ(p, 1/n) 6= ∅.

We start by writing down estimates that follow from the hyperbolic local product
structure. There exist constants δ, η > 0,Λ, λ > 1 and an integer N > 1 so that
whenever x′, y′ ∈ Wu

δ (z
′), z′ ∈ K and f j(x′), f j(y′) ∈ Wu

δ (f
j(z′)), j = 1, . . . ,m

then

ρ(f j(x′), f j(y′)) ≥ ηρ(x′, y′) ∀ j ≤ N

ρ(f j(x′), f j(y′)) > λjρ(x′, y′), N < j ≤ m

ρ(f j(x′), f j(y′)) ≤ Λjρ(x′, y′), 1 ≤ j ≤ m

(*) Moreover, whenever x′′, z′′ ∈ K, r > 0 and x′′ ∈ Wu
δ/2(z

′′) with W u
r (x

′′) ⊂

Wu
δ (z

′′) there is a y′′ ∈ (Wu
r (x

′′) \Wu
ηr(x

′′)) ∩K.(*)

We will find an arbitrarily small τ > 0, τ >> ε > 0 and sequences {qk}
∞
k=0 ⊂

Wu
τ (q), {nk}

∞
k=0 ⊂ Z+, 0 ≤ n0 < n1 < · · · so that fnk(q`) ∈ Wu

τ (f
nk(qk)), ` > k
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and Cρ(p, ε, nk) ∩ f
−nk(Wu

τ (f
nk(qk))) = ∅. Then limk→∞ qk is in Wu

τ (q) but is not
in Cρ(p) and the proof will be complete.

The construction of the sequences {qk}, {nk} goes by induction. The require-
ments needed for ε, τ will become evident during the proof. First of all we need ε, τ
small enough that p /∈ W u

τ (q) to start the induction. Let n0 = 0, q0 = q. Suppose
nk, qk have been chosen and that Cρ(p, ε, nk) ∩ f

−nk(Wu
τ (f

nk(qk))) = ∅. There are
two cases:

(I) Cρ(p, ε, nk+1)∩ f
−nk−1(Wu

τ (f
nk+1(qk))) = ∅. Then we define nk+1 = nk+1

and set qk+1 = qk.

(II) Cρ(p, ε, nk + 1) ∩ f
−nk−1(Wu

τ (f
nk+1(qk))) 6= ∅. Then there is a point x′ ∈

Wu
2τ (f

nk+1(qk)) so that x := fnk+1(p) ∈ W s
loc(x

′) and ρ(x, x′) ≤ Cε for some
fixed constant C where C depends on the angle between the stable and unstable
manifolds. Set y := fnk+1(qk). We consider two cases:

(IIA) ρ(x′, y) ≥ Cε
η

Then the distance between f j(x) or f j(x′) and f j(y) remains strictly larger than
ε for j ≤ N and for j > N, ρ(f j(x), f j(y)), ρ(f j(x′), f j(y)) ≥ λjρ(x′, y), as long as
ρ(x′, y)Λj ≤ δ i.e., j log Λ ≤ log δ

ρ(x′,y) or

j ≤ 1
log Λ log

(

δ
ρ(x′,y)

)

.

Assume first that N ≤ 1
log Λ log

(

δ
ρ(x′,y)

)

, i.e.,

(IIA1): ρ(x′, y) ≤ δ
ΛN

.

For j0 =
[

1
log Λ log

(

δ
ρ(x′,y)

)]

we have

ρ(f j0(x′), f j0(y)) ≥ ρ(x′, y)λ

[

1
log Λ log

(

δ
ρ(x′,y)

)]

.

In fact, we can assume that no point in

Wu

(

f j0(y),
ρ(x′, y)

2
λ

[

1
log Λ log

(

δ
ρ(x′,y)

)]

)

have been captured by p for 0 ≤ j ≤ j0, i.e., points in

Wu(f j0(y),
1

2
ρ(x′, y)1−

log λ
log Λ δ

log λ
log Λ )

have not been captured.

Notice that if ε > 0 is small enough, 12

(

Cε
η

)1− log λ
log Λ

δ
log λ
log Λ > εσ, σ := 1 − 1

2
log λ
log Λ

and moreover, εσ << δ
NΛ . We set τ = εσ, nk+1 = nk + j0 and pick some qk+1 ∈

Wu
τ/2(f

nk+j0(qk)) ∩K.

(IIA2): ρ(x′, y) > δ
ΛN

. This can’t happen since τ << δ
ΛN

and x′ ∈Wu
2τ (y).

Next we deal with

(IIB): ρ(x′, y) < Cε
η .
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Using (*) we can find a y′ ∈ Wu
δ (y) with

2Cε
η ≤ ρ(y′, y) ≤ 2Cε

η2 . Replacing y by

y′ we are back to case (IIA).

4. Holomorphic Endomorphisms of Pk

Holomorphic endomorphisms on Pk carry a unique invariant measure µ, ergodic,
mixing and of maximal entropy ([FS1],[BD2]).

THEOREM 4.1. Let f : Pk → Pk be a holomorphic map of degree d at least
2. Let ρ denote the Fubini-Study metric. Then for any q ∈ Sµ the complement of
Cρ(q) in Sµ is dense in Sµ.

Proof: Fix q ∈ Sµ. Let p ∈ Sµ and let ε1 > 0. We need to find an ε > 0 and a
point p′′ ∈ Sµ ∩∆(p, ε1) = {x ∈ Sµ; ρ(x, p) < ε1} with p

′′ ∈ Cρ(q, ε)
c.

(i) Suppose first that O(q) is a finite set S. By ([BD1]) the repelling periodic orbits
are dense in Sµ, hence we can find a periodic point p

′ ∈ Sµ∩∆(p, ε1) not in S. Hence
O(p′) ∩ O(q) = ∅ and since they are finite, we can choose 0 < ε < ρ(O(q),O(p′))
and obtain that p′ ∈ Cρ(q, ε)

c.
(ii) Suppose that C(q) is infinite. We argue using homoclinic orbits. Pick an integer
` >> 1. Let C denote the critical set of f. Set C` := C ∪ f(C) ∪ · · · ∪ f `(C). For
a generic point x ∈ Pk the measures µix := 1

dki

∑

y∈f−i(x) δy converge weakly to

µ. Here the points y are counted with multiplicity. In particular this holds for all
x outside an algebraic subvariety of zero µ− mass. This subvariety is contained
in C ([BD2]). Since algebraic varieties carry no µ−mass ([FS1], [BD2]) and since
repelling periodic orbits are dense in Sµ ([BD1]), we can find a point p0 ∈ [∆(p, ε1)∩
Sµ]\C` which is on a repelling periodic orbit {f

j(p0) =: pj}
N
j=0, pN = p0 contained

in Sµ.

For each i ≥ 1, let T i = {pij}
dki

j=1 denote all the f
−1 preimages of p0 counted

with multiplicity. Since Sµ is totally invariant ([FS1]), all preimages are contained

in Sµ. The measures µ
i := 1

dki

∑dki

j=1 δpij converge weakly to µ.

Let p11 denote a preimage of p0 which is not on the periodic orbit of p0 and let
p21, p

2
2 denote two distinct preimages of p

1
1. For i ≥ 2, let T is ⊂ T i, s = 1, 2 denote

the set of points pij for which none of the points p
i
j , f(p

i
j), . . . , f

i(pij) are on the

critical set and f i−2(pij) = p2s.

Hence when i ≤ `, T is contains exactly d
k(i−2) points, each of which has multi-

plicity one. Therefore, if i ≤ `, s = 1, 2

µis :=
1

dki

∑

x∈T is

δx

has mass 1
d2k

. However, for i > ` some preimages f−i(p) might be on the critical

set. Hence the masses decrease, ‖µi+1s ‖ ≤ ‖µis‖.

By a counting argument as in ([BD1]), based on Bezouts theorem, we can, as-
suming that ` is large enough, have ‖µis‖ ≥

1
2d2k

for all i, s.
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Let U = U(p0) be a small neighborhood of p0, U ⊂ ∆(p, ε1), on which fN

is biholomorphic onto its image and f−N (U) ∩ U ⊂⊂ U . We can assume fN

is strictly expanding in some local coordinate system, i.e., ‖fN (x) − fN (y)‖ ≥
λ‖x−y‖ ∀ x, y ∈ U, λ > 1 a constant. Since p0 is in the support of µ, µ(U) =: δ > 0.
From ([FS1]) it follows that for large enough r, µ(f r(U)) ≥ 1− 1

4d2k

Set Cr := C ∪ri=1 f
−i(C). Then Cr has no µ− mass and p0 is not in C

r.

Set V0 = U \ Cr and Vi = f i(V0), i = 1, . . . , r. Then {f
i} are locally biholomor-

phic on V0 and µ(Vr) = µ(fr(U)) ≥ 1− 1
4d2k

.

By the estimate of ‖µis‖, it follows that for large enough i0, µ
i0
s (Vr) > 0, s = 1, 2.

Therefore there exists two points p̃1, p̃2 ∈ V0 ∩Sµ so that the orbits {f
i(p̃s)}

r+i0
i=0 ⊂

Sµ contain no critical points and the orbits are disjoint except that f
r+i0−1(p̃1) =

fr+i0−1(p̃2) = p11. Also f
r+i0−2(p̃s) = p2s.

Fix two small neighborhoods Ws =Ws(p̃s) so that all f
i, i = 1, . . . , r+ i0 are bi-

holomorphic onWs, the images are all pairwise disjoint, except that f
r+i0−1(W1) =

fr+i0−1(W2) and f
r+i0(Ws) = ∆(p0, η) for a small η > 0, s = 1, 2. Define W−1

s =

f−1(Ws) ∩ U and inductively, W
−(j+1)
s = f−1(W−j

s ) ∩ U. Fix a j0 large enough
that W−j0

s ⊂ ∆(p0, η/2), s = 1, 2. Increasing j0 further, we can also arrange that
the biholomorphic maps f j0+r+i0 :W−j0

s → ∆(p0, η) is strictly expanding.

We will define a sequence of open sets {Ui}i≥0, Ui+1 ⊂ Ui, and occasionally so
that Ui+1 ⊂⊂ Ui, f

i : Ui → W (i) is a biholomorphic map where W (i) is one ele-
ment of the following finite list of open sets:

∆(p0, η)
f i(∆(p0, η)), i = 1, . . . , N − 1
W−i
s , i = 1, . . . , j0, s = 1, 2

Ws, s = 1, 2
f i(Ws), i = 1, . . . , r + i0 − 1, s = 1, 2.

Since each of these open sets contain points in Sµ, each Ui will also. We moreover
want W (i) not to contain a point in ∆(f i(q), ε), if ε > 0 is small enough.

To start we will define U0 = ∆(p0, η). Since q is not in U, we can takeW (0) = U0.
Next we continue by setting U1, . . . , UN−1 = U0 andW (i) = f i(Ui), i = 1, . . . , N−1
unless f i(q) gets closer to this W (i) than ε.

Assuming at first that f i(q) does not get closer than ε, we continue by setting
UN = f−N (U0)∩U0 and W (N) = U0 and continue this process the same way. This
procedure is only interrupted if f i(q) gets closer to these W (i) than ε for some i. If

this occurs for i = i1, then we redefine Ui, call the new Ui, Ũi with Ũi ⊂⊂ Ui and if
i = jN+r, 0 ≤ r ≤ N, then f i(Ũi) is one of the sets f

r(W−j0
s ), s = 1, 2. Since these

two sets as well as their forward orbits until they reach p2s are separated, choosing
the right one of the two ensures that the orbit f j(q) stays at least an ε distance
away until we return to p2s. But once we return there, we can repeat the process.
Notice that by the strict expansion of the iterates fN on U0 and f

j0+r+i0 on W−j0
s ,

the diameters of the Ui shrink geometrically. Finally we set p
′′ = ∩i>0U i = ∩i>0Ui.

Clearly ρ(fn(p′′), fn(q)) > ε ∀ n ≥ 0 so p′′ ∈ Cρ(q, ε)
c as desired.
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Since the measure µ is mixing, ([FS1]), we can combine the above result with
Corollary 2.2 and obtain:

COROLLARY 4.2. Let ρ denote the Fubini-Study metric on Pk. Let f : Pk → Pk
be a holomorphic map of degree at least 2. Then for every z ∈ Sµ, Cρ(z) has full µ
measure while the complement of Cρ(z) is dense in Sµ.

The results here naturally suggest the following questions:

Question 4.3. Is it possible that all repelling periodic points of a holomorphic self-
map of Pk, k ≥ 2, are in the critical orbit? In fact, given C` = C ∪ f(C)∪ · · · ∪C`,
does there exist a repelling periodic orbit which does not intersect C`? (even for
` = 1.)

Question 4.4. Is Proposition 3.1 valid for general hyperbolic endomorphisms in
the case the pseudometric is a metric?

Question 4.5. When does Theorem 4.1 hold for rational self maps of P2?

We end with a partial result on Question 4.5, namely in the case of a complex
Hénon maps.
If f : C2 → C2 is a Hénon map of degree d ≥ 2, then there is a unique invariant

measure µ, ergodic, mixing and of maximal entropy ([BLS]). The support of µ, Sµ,
is a compact subset of C2. Let ρ be any continuous metric.

PROPOSITION 4.6. Let f be a Hénon map. For any q ∈ Sµ, the complement
Cρ(q)

c ∩ Sµ of Cρ(q) in Sµ is dense in Sµ.

We state first a Lemma about behaviour near saddle points. Let p be a saddle
periodic point for f. We choose a local holomorphic coordinate system (z, w) near
p so that

Wu
p,loc = {(z, w);w = 0, |z| < 1}

W s
p,loc = {(z, w); z = 0, |w| < 1}

are local unstable and stable manifolds respectively and p = 0. By ([BLS]) there is
a transverse intersection of the global unstable and stable manifolds other than p.

LEMMA 4.7. Suppose (z0, 0), 0 < |z0| < 1 is a transverse homoclinic point, i.e.,
(z0, 0) ∈ W s(p) and the tangent space of W s(p) at (z0, 0) is not the z− axis. Let
|z0| < r < 1, and let 0 < δ < r − |z0|. Then there exists an arbitrarily small
η > 0 and an integer N > 1 so that if n ≥ N and X is a holomorphic graph
w = g(z), z ∈ ∆(z0, δ), |g| < η then fn(X) contains a relatively open set Y which
is a graph w = h(z), |z| < r, |w| < η.

Proof: Observe that the conclusion follows easily for the special case when
X = {(z, 0); z ∈ ∆(z0, δ)}. Finally we choose η small enough to complete the proof.
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Proof of the Proposition: Suppose p, q ∈ Sµ and ε1 > 0. We will find an
ε > 0 and a point p′′ ∈ Sµ ∩∆(p, ε1) such that p

′′ ∈ Cρ(q, ε)
c.

If q is a periodic point, since periodic points are dense in Sµ ([BLS]) and points
can carry no mass, we can let p′′ be on another periodic orbit and we are done.

So we can suppose that the orbit of q is infinite. We choose a periodic saddle point
p′ ∈ ∆(p, ε1) which then necessarily is not on the orbit of q. Use local coordinates
(z, w) as in the above Lemma near p′. We can assume that the bidisc {|z|, |w| <
1} ⊂ ∆(p, ε1). By ([BLS]) p

′ admits transverse homoclinic points. Hence we can

find two distinct points zk0 6= 0 and disjoint discs ∆(z00 , δ),∆(z
1
0 , δ), with zk0 ∈

W s(p′), k = 0, 1. Let (ηk, Nk) denote the numbers from the Lemma for the two
points. We can choose r > |zk0 |+ δ, k = 0, 1 in both cases.

Letting η = mink{η
k} and choosingN ≥ maxkN

k large enough we can conclude:

LEMMA 4.8. Suppose Xk is a graph w = gk(z), z ∈ ∆(zk0 , δ), |g
k| < η, then

fN (Xk) contains graphs w = hk,`(z), z ∈ ∆(z`0, δ), |h
k,`| < η, k, ` = 0, 1.

We fix ε2 = mini≤N ρ(f
i(∆(z00 , δ)× (|w| < η)), f i(∆(z10 , δ)× (|w| < η))). Choose

ε < ε2 so that if x ∈ Sµ is any point and ρ(f
i(x), f i(∆(zk0 , δ)× (|w| ≤ η))) ≤ ε for

some 0 ≤ i ≤ N, then ρ(f i(x), f i(∆(z1−k0 δ)× (|w| ≤ η))) > ε for all 0 ≤ i ≤ N.

We will find a point p′′ ∈ ∩∞i=0Ui where Ui+1 ⊂ Ui ∀ i, Ui+1 ⊂⊂ Ui occasionally.
Furthermore each Ui will contain a point in Sµ.

We define U0 = ∆(zk0 ) × {0} where k ∈ {0, 1} is such that ρ(f
i(q), f i(U0)) >

ε ∀ i = 0, . . . , N. Set Ui = U0, i = 0, . . . , N. Since (zk0 , 0) ∈ W s(p′) ∩Wu(p′) is a
transverse intersection, we know ([BLS]) that (zk0 , 0) ∈ Sµ. Hence Ui ∩ Sµ 6= ∅, i =
0, . . . , N.

Next, by Lemma 4.8, there are open subsets U kN ⊂⊂ UN , k = 0, 1 such that
fN (UkN ) are graphs in ∆(z

k
0 , δ)×(|w| < η). In particular, fN (UkN ) ⊂ fN (Wu(p′)) =

Wu(p′), it follows that fN (UkN ) contains a transverse homoclinic intersection so
fN (UkN ) ∩ Sµ 6= ∅. Since Sµ is totally invariant, U

k
N contains a point in Sµ.

We repeat the process starting with X = Xk = fN (UkN ) for k = 0, 1, chosen so
that ρ(fN+i(q), f i(X)) > ε ∀ i = 0, . . . , N. Also set, for this k, UN+1 = · · · = U2N =
UkN . Proceeding inductively we obtain a sequence {Ui}, Ui+1 ⊂ Ui, Ui+N ⊂⊂ Ui and

Ui ∩Sµ 6= ∅, and ρ(f
i(Ui), f

i(q)) > ε. We can finally choose p′′ ∈ (∩U i)∩Sµ. Then
ρ(f i(q), f i(p′′)) > ε for all i, so p′′ ∈ C(q, ε)c ∩ Sµ, as desired.
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